磁纤维中微尺度磁畴动力学与宏观电磁响应的桥接:微磁模拟研究

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yunlong Li , Yunfei Wang , Tangfeng Feng , Javier A. Moya , Faxiang Qin
{"title":"磁纤维中微尺度磁畴动力学与宏观电磁响应的桥接:微磁模拟研究","authors":"Yunlong Li ,&nbsp;Yunfei Wang ,&nbsp;Tangfeng Feng ,&nbsp;Javier A. Moya ,&nbsp;Faxiang Qin","doi":"10.1016/j.jallcom.2025.183810","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic fibers are promising candidates for smart sensing and electromagnetic composites due to their tunable electromagnetic properties governed by unique magnetic domain structure under external stimuli. This study presents a multiscale computational framework developed using the Micromagnetic Simulation module in COMSOL Multiphysics to investigate the interplay between stress and magnetic response in Co-based magnetic fibers. By coupling micromagnetic simulation with time- and frequency-domain analysis, we reveal how tensile stress modulates the magnetic domain configurations and alters the electromagnetic response. The results demonstrate pronounced stress-magnetoelastic coupling, wherein tensile stress reduces axial magnetization while enhancing circumferential alignment, directly altering ferromagnetic resonance (FMR) characteristics. We further identify a stress-magnetostriction coupling coefficient that manipulates the FMR response to applied stress. Experimental validation through magnetization measurements, magneto-optical Kerr microscopy and impedance measurements supports the simulation predictions. This work provides fundamental insights into magneto-mechanical interactions in magnetic fibers and also provides a computational framework for designing stress-tunable materials optimized for high-frequency applications in sensors, electromagnetic composites, and multifunctional devices.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1041 ","pages":"Article 183810"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging microscale magnetic domain dynamics and macroscopic electromagnetic response in magnetic fibers: A micromagnetic simulation study\",\"authors\":\"Yunlong Li ,&nbsp;Yunfei Wang ,&nbsp;Tangfeng Feng ,&nbsp;Javier A. Moya ,&nbsp;Faxiang Qin\",\"doi\":\"10.1016/j.jallcom.2025.183810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic fibers are promising candidates for smart sensing and electromagnetic composites due to their tunable electromagnetic properties governed by unique magnetic domain structure under external stimuli. This study presents a multiscale computational framework developed using the Micromagnetic Simulation module in COMSOL Multiphysics to investigate the interplay between stress and magnetic response in Co-based magnetic fibers. By coupling micromagnetic simulation with time- and frequency-domain analysis, we reveal how tensile stress modulates the magnetic domain configurations and alters the electromagnetic response. The results demonstrate pronounced stress-magnetoelastic coupling, wherein tensile stress reduces axial magnetization while enhancing circumferential alignment, directly altering ferromagnetic resonance (FMR) characteristics. We further identify a stress-magnetostriction coupling coefficient that manipulates the FMR response to applied stress. Experimental validation through magnetization measurements, magneto-optical Kerr microscopy and impedance measurements supports the simulation predictions. This work provides fundamental insights into magneto-mechanical interactions in magnetic fibers and also provides a computational framework for designing stress-tunable materials optimized for high-frequency applications in sensors, electromagnetic composites, and multifunctional devices.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1041 \",\"pages\":\"Article 183810\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092583882505371X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092583882505371X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

磁性纤维具有独特的磁畴结构,在外界刺激下具有可调谐的电磁特性,是智能传感和电磁复合材料的理想选择。本研究提出了一个使用COMSOL Multiphysics中的微磁模拟模块开发的多尺度计算框架,以研究co基磁性纤维中应力和磁响应之间的相互作用。通过将微磁仿真与时域和频域分析相结合,我们揭示了拉伸应力如何调节磁畴结构并改变电磁响应。结果显示了明显的应力-磁弹性耦合,其中拉伸应力降低了轴向磁化强度,同时增强了周向对准,直接影响了铁磁共振(FMR)特性。我们进一步确定了一个应力-磁致伸缩耦合系数,该系数可以控制FMR对外加应力的响应。通过磁化测量、磁光克尔显微镜和阻抗测量的实验验证支持了模拟预测。这项工作为磁性纤维中的磁-机械相互作用提供了基本的见解,并为设计应力可调材料提供了一个计算框架,该材料可优化用于传感器、电磁复合材料和多功能设备的高频应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging microscale magnetic domain dynamics and macroscopic electromagnetic response in magnetic fibers: A micromagnetic simulation study
Magnetic fibers are promising candidates for smart sensing and electromagnetic composites due to their tunable electromagnetic properties governed by unique magnetic domain structure under external stimuli. This study presents a multiscale computational framework developed using the Micromagnetic Simulation module in COMSOL Multiphysics to investigate the interplay between stress and magnetic response in Co-based magnetic fibers. By coupling micromagnetic simulation with time- and frequency-domain analysis, we reveal how tensile stress modulates the magnetic domain configurations and alters the electromagnetic response. The results demonstrate pronounced stress-magnetoelastic coupling, wherein tensile stress reduces axial magnetization while enhancing circumferential alignment, directly altering ferromagnetic resonance (FMR) characteristics. We further identify a stress-magnetostriction coupling coefficient that manipulates the FMR response to applied stress. Experimental validation through magnetization measurements, magneto-optical Kerr microscopy and impedance measurements supports the simulation predictions. This work provides fundamental insights into magneto-mechanical interactions in magnetic fibers and also provides a computational framework for designing stress-tunable materials optimized for high-frequency applications in sensors, electromagnetic composites, and multifunctional devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信