{"title":"在线状肌动蛋白丝成核过程中,SPIN90二聚体对Arp2/3复合物的激活","authors":"Justus Francis, Achyutha Krishna Pathri, Kankipati Teja Shyam, Sridhar Sripada, Rishav Mitra, Heidy Y. Narvaez-Ortiz, Kiran Vyshnav Eliyan, Brad J. Nolen, Saikat Chowdhury","doi":"10.1038/s41594-025-01673-8","DOIUrl":null,"url":null,"abstract":"<p>Arp2/3 complex is a key nucleator of actin filaments. It requires activation by nucleation-promoting factors (NPFs). WISH/DIP1/SPIN90 (WDS) proteins represent a unique class of NPFs that activate the Arp2/3 complex independently of preexisting filaments, promoting linear actin-filament nucleation. In fission yeast, Dip1 binds to the clamp subunits in Arp2/3 complex to induce the short-pitch conformation, where Arp2 moves closer to Arp3 to mimic a filamentous actin dimer. However, how WDS proteins stimulate subunit flattening in Arp subunits, a ‘scissor-like’ conformational change akin to what is observed in an actin monomer during filament formation, remained unclear. Here we present cryo-electron microscopy structures of human SPIN90 bound to activated bovine Arp2/3 complex on an actin filament pointed end. The structures show that SPIN90 dimerizes through a metazoan-specific domain in the middle segment, engaging both the clamp and the Arp3/ARPC3 interface, to drive the activating conformational changes in Arp2/3 complex. Remarkably, a single SPIN90 dimer can also bridge two Arp2/3 complexes, enabling bidirectional actin nucleation and suggesting a mechanism for rapidly assembling complex actin network architectures.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of Arp2/3 complex by a SPIN90 dimer in linear actin-filament nucleation\",\"authors\":\"Justus Francis, Achyutha Krishna Pathri, Kankipati Teja Shyam, Sridhar Sripada, Rishav Mitra, Heidy Y. Narvaez-Ortiz, Kiran Vyshnav Eliyan, Brad J. Nolen, Saikat Chowdhury\",\"doi\":\"10.1038/s41594-025-01673-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Arp2/3 complex is a key nucleator of actin filaments. It requires activation by nucleation-promoting factors (NPFs). WISH/DIP1/SPIN90 (WDS) proteins represent a unique class of NPFs that activate the Arp2/3 complex independently of preexisting filaments, promoting linear actin-filament nucleation. In fission yeast, Dip1 binds to the clamp subunits in Arp2/3 complex to induce the short-pitch conformation, where Arp2 moves closer to Arp3 to mimic a filamentous actin dimer. However, how WDS proteins stimulate subunit flattening in Arp subunits, a ‘scissor-like’ conformational change akin to what is observed in an actin monomer during filament formation, remained unclear. Here we present cryo-electron microscopy structures of human SPIN90 bound to activated bovine Arp2/3 complex on an actin filament pointed end. The structures show that SPIN90 dimerizes through a metazoan-specific domain in the middle segment, engaging both the clamp and the Arp3/ARPC3 interface, to drive the activating conformational changes in Arp2/3 complex. Remarkably, a single SPIN90 dimer can also bridge two Arp2/3 complexes, enabling bidirectional actin nucleation and suggesting a mechanism for rapidly assembling complex actin network architectures.</p>\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01673-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01673-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activation of Arp2/3 complex by a SPIN90 dimer in linear actin-filament nucleation
Arp2/3 complex is a key nucleator of actin filaments. It requires activation by nucleation-promoting factors (NPFs). WISH/DIP1/SPIN90 (WDS) proteins represent a unique class of NPFs that activate the Arp2/3 complex independently of preexisting filaments, promoting linear actin-filament nucleation. In fission yeast, Dip1 binds to the clamp subunits in Arp2/3 complex to induce the short-pitch conformation, where Arp2 moves closer to Arp3 to mimic a filamentous actin dimer. However, how WDS proteins stimulate subunit flattening in Arp subunits, a ‘scissor-like’ conformational change akin to what is observed in an actin monomer during filament formation, remained unclear. Here we present cryo-electron microscopy structures of human SPIN90 bound to activated bovine Arp2/3 complex on an actin filament pointed end. The structures show that SPIN90 dimerizes through a metazoan-specific domain in the middle segment, engaging both the clamp and the Arp3/ARPC3 interface, to drive the activating conformational changes in Arp2/3 complex. Remarkably, a single SPIN90 dimer can also bridge two Arp2/3 complexes, enabling bidirectional actin nucleation and suggesting a mechanism for rapidly assembling complex actin network architectures.