Tianyang Liu, Luyan Cao, Miroslav Mladenov, Guillaume Romet-Lemonne, Michael Way, Carolyn A. Moores
{"title":"通过SPIN90二聚体介导的arp2 /3双向肌动蛋白组装","authors":"Tianyang Liu, Luyan Cao, Miroslav Mladenov, Guillaume Romet-Lemonne, Michael Way, Carolyn A. Moores","doi":"10.1038/s41594-025-01665-8","DOIUrl":null,"url":null,"abstract":"<p>Branched actin networks nucleated by the Arp2/3 complex have critical roles in various cellular processes, from cell migration to intracellular transport. However, when activated by WISH/DIP/SPIN90-family proteins, Arp2/3 nucleates linear actin filaments. Here we found that human SPIN90 is a dimer that can nucleate bidirectional actin filaments. To understand the basis for this, we determined a 3-Å-resolution structure of human SPIN90–Arp2/3 complex nucleating actin filaments. Our structure shows that SPIN90 dimerizes through a three-helix bundle and interacts with two Arp2/3 complexes. Each SPIN90 molecule binds both Arp2/3 complexes to promote their activation. Our analysis demonstrates that single-filament nucleation by Arp2/3 is mechanistically more like branch formation than previously appreciated. The dimerization domain in SPIN90 orthologs is conserved in metazoans, suggesting that this mode of bidirectional nucleation is a common strategy to generate antiparallel actin filaments.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arp2/3-mediated bidirectional actin assembly by SPIN90 dimers\",\"authors\":\"Tianyang Liu, Luyan Cao, Miroslav Mladenov, Guillaume Romet-Lemonne, Michael Way, Carolyn A. Moores\",\"doi\":\"10.1038/s41594-025-01665-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Branched actin networks nucleated by the Arp2/3 complex have critical roles in various cellular processes, from cell migration to intracellular transport. However, when activated by WISH/DIP/SPIN90-family proteins, Arp2/3 nucleates linear actin filaments. Here we found that human SPIN90 is a dimer that can nucleate bidirectional actin filaments. To understand the basis for this, we determined a 3-Å-resolution structure of human SPIN90–Arp2/3 complex nucleating actin filaments. Our structure shows that SPIN90 dimerizes through a three-helix bundle and interacts with two Arp2/3 complexes. Each SPIN90 molecule binds both Arp2/3 complexes to promote their activation. Our analysis demonstrates that single-filament nucleation by Arp2/3 is mechanistically more like branch formation than previously appreciated. The dimerization domain in SPIN90 orthologs is conserved in metazoans, suggesting that this mode of bidirectional nucleation is a common strategy to generate antiparallel actin filaments.</p>\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01665-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01665-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arp2/3-mediated bidirectional actin assembly by SPIN90 dimers
Branched actin networks nucleated by the Arp2/3 complex have critical roles in various cellular processes, from cell migration to intracellular transport. However, when activated by WISH/DIP/SPIN90-family proteins, Arp2/3 nucleates linear actin filaments. Here we found that human SPIN90 is a dimer that can nucleate bidirectional actin filaments. To understand the basis for this, we determined a 3-Å-resolution structure of human SPIN90–Arp2/3 complex nucleating actin filaments. Our structure shows that SPIN90 dimerizes through a three-helix bundle and interacts with two Arp2/3 complexes. Each SPIN90 molecule binds both Arp2/3 complexes to promote their activation. Our analysis demonstrates that single-filament nucleation by Arp2/3 is mechanistically more like branch formation than previously appreciated. The dimerization domain in SPIN90 orthologs is conserved in metazoans, suggesting that this mode of bidirectional nucleation is a common strategy to generate antiparallel actin filaments.