体内光开关内源性谷氨酸受体在神经系统和单突触中的作用。

IF 8.4 1区 医学 Q1 CLINICAL NEUROLOGY
Aida Garrido-Charles , Miquel Bosch , Hyojung Lee , Xavier Rovira , Silvia Pittolo , Artur Llobet , Hovy Ho-Wai Wong , Ana Trapero , Carlo Matera , Claudio Papotto , Carme Serra , Amadeu Llebaria , Eduardo Soriano , Maria V. Sanchez-Vives , Christine E. Holt , Pau Gorostiza
{"title":"体内光开关内源性谷氨酸受体在神经系统和单突触中的作用。","authors":"Aida Garrido-Charles ,&nbsp;Miquel Bosch ,&nbsp;Hyojung Lee ,&nbsp;Xavier Rovira ,&nbsp;Silvia Pittolo ,&nbsp;Artur Llobet ,&nbsp;Hovy Ho-Wai Wong ,&nbsp;Ana Trapero ,&nbsp;Carlo Matera ,&nbsp;Claudio Papotto ,&nbsp;Carme Serra ,&nbsp;Amadeu Llebaria ,&nbsp;Eduardo Soriano ,&nbsp;Maria V. Sanchez-Vives ,&nbsp;Christine E. Holt ,&nbsp;Pau Gorostiza","doi":"10.1016/j.brs.2025.09.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To interrogate animal physiology <em>in vivo</em>, there is a lack of non-genetic methods to control the activity of endogenous proteins with pharmacological and spatiotemporal precision. To address this need, we recently developed targeted covalent photoswitchable (TCP) compounds that enable the remote control of endogenous glutamate receptors (GluRs) using light.</div></div><div><h3>Methods</h3><div>We combine the photopharmacological effector TCP9 with neuronal activity sensors to demonstrate all-optical reversible control of endogenous GluRs across multiple spatiotemporal scales in rat brain tissue <em>ex vivo</em> and in <em>Xenopus</em> tadpole brains <em>in vivo</em>.</div></div><div><h3>Findings</h3><div>TCP9 allows photoactivation of neuronal ensembles, individual neurons, and single synapses in <em>ex vivo</em> tissue and in intact brain <em>in vivo</em>, which is challenging using optogenetics and neurotransmitter uncaging. TCP9 covalently targets AMPA and kainate receptors, maintaining their functionality and photoswitchability for extended periods (&gt;8 h) after a single compound application. This allows tracking endogenous receptor physiology during synaptic plasticity events such as the reduction of functional AMPA receptors during long-term depression in hippocampal neurons.</div></div><div><h3>Conclusion</h3><div>TCP9 is a unique non-invasive tool for durable labeling, reversible photoswitching, and functional tracking of native receptors in brain tissue without genetic manipulation.</div></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"18 6","pages":"Pages 1779-1793"},"PeriodicalIF":8.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoswitching endogenous glutamate receptors in neural ensembles and single synapses in vivo\",\"authors\":\"Aida Garrido-Charles ,&nbsp;Miquel Bosch ,&nbsp;Hyojung Lee ,&nbsp;Xavier Rovira ,&nbsp;Silvia Pittolo ,&nbsp;Artur Llobet ,&nbsp;Hovy Ho-Wai Wong ,&nbsp;Ana Trapero ,&nbsp;Carlo Matera ,&nbsp;Claudio Papotto ,&nbsp;Carme Serra ,&nbsp;Amadeu Llebaria ,&nbsp;Eduardo Soriano ,&nbsp;Maria V. Sanchez-Vives ,&nbsp;Christine E. Holt ,&nbsp;Pau Gorostiza\",\"doi\":\"10.1016/j.brs.2025.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>To interrogate animal physiology <em>in vivo</em>, there is a lack of non-genetic methods to control the activity of endogenous proteins with pharmacological and spatiotemporal precision. To address this need, we recently developed targeted covalent photoswitchable (TCP) compounds that enable the remote control of endogenous glutamate receptors (GluRs) using light.</div></div><div><h3>Methods</h3><div>We combine the photopharmacological effector TCP9 with neuronal activity sensors to demonstrate all-optical reversible control of endogenous GluRs across multiple spatiotemporal scales in rat brain tissue <em>ex vivo</em> and in <em>Xenopus</em> tadpole brains <em>in vivo</em>.</div></div><div><h3>Findings</h3><div>TCP9 allows photoactivation of neuronal ensembles, individual neurons, and single synapses in <em>ex vivo</em> tissue and in intact brain <em>in vivo</em>, which is challenging using optogenetics and neurotransmitter uncaging. TCP9 covalently targets AMPA and kainate receptors, maintaining their functionality and photoswitchability for extended periods (&gt;8 h) after a single compound application. This allows tracking endogenous receptor physiology during synaptic plasticity events such as the reduction of functional AMPA receptors during long-term depression in hippocampal neurons.</div></div><div><h3>Conclusion</h3><div>TCP9 is a unique non-invasive tool for durable labeling, reversible photoswitching, and functional tracking of native receptors in brain tissue without genetic manipulation.</div></div>\",\"PeriodicalId\":9206,\"journal\":{\"name\":\"Brain Stimulation\",\"volume\":\"18 6\",\"pages\":\"Pages 1779-1793\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Stimulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1935861X25003249\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X25003249","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究动物体内生理,缺乏非遗传方法来控制内源性蛋白的活性,具有药理学和时空精度。为了满足这一需求,我们最近开发了靶向共价光开关(TCP)化合物,可以利用光远程控制内源性谷氨酸受体(GluRs)。方法:将光药效学效应物TCP9与神经元活动传感器相结合,在大鼠离体脑组织和爪蟾蝌蚪体内脑组织中展示内源性GluRs在多时空尺度上的全光可逆控制。研究发现:TCP9可以光激活离体组织和体内完整大脑中的神经元群、单个神经元和单个突触,这是用光遗传学和神经递质释放的挑战。TCP9共价靶向AMPA和kainate受体,在单一化合物应用后延长其功能和光切换性(bb0 - 8小时)。这允许在突触可塑性事件中跟踪内源性受体生理,如海马神经元长期抑郁期间功能性AMPA受体的减少。结论:TCP9是一种独特的非侵入性工具,可用于脑组织中天然受体的持久标记,可逆光开关和功能跟踪,而无需基因操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photoswitching endogenous glutamate receptors in neural ensembles and single synapses in vivo

Photoswitching endogenous glutamate receptors in neural ensembles and single synapses in vivo

Purpose

To interrogate animal physiology in vivo, there is a lack of non-genetic methods to control the activity of endogenous proteins with pharmacological and spatiotemporal precision. To address this need, we recently developed targeted covalent photoswitchable (TCP) compounds that enable the remote control of endogenous glutamate receptors (GluRs) using light.

Methods

We combine the photopharmacological effector TCP9 with neuronal activity sensors to demonstrate all-optical reversible control of endogenous GluRs across multiple spatiotemporal scales in rat brain tissue ex vivo and in Xenopus tadpole brains in vivo.

Findings

TCP9 allows photoactivation of neuronal ensembles, individual neurons, and single synapses in ex vivo tissue and in intact brain in vivo, which is challenging using optogenetics and neurotransmitter uncaging. TCP9 covalently targets AMPA and kainate receptors, maintaining their functionality and photoswitchability for extended periods (>8 h) after a single compound application. This allows tracking endogenous receptor physiology during synaptic plasticity events such as the reduction of functional AMPA receptors during long-term depression in hippocampal neurons.

Conclusion

TCP9 is a unique non-invasive tool for durable labeling, reversible photoswitching, and functional tracking of native receptors in brain tissue without genetic manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Stimulation
Brain Stimulation 医学-临床神经学
CiteScore
13.10
自引率
9.10%
发文量
256
审稿时长
72 days
期刊介绍: Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation. Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信