{"title":"电压传感领域:结构和功能的多样性。","authors":"Martin C Heiss, Bernhard E Flucher","doi":"10.1007/s00249-025-01797-1","DOIUrl":null,"url":null,"abstract":"<p><p>Voltage-sensing domains (VSDs) are structural modules of voltage-gated ion channels, which sense changes in the membrane potential and, in response, open and close the channel's ion conduction pore. VSDs comprise a bundle of four antiparallel transmembrane helices (S1-S4). Their basic function is well described by the sliding helix model. Upon membrane depolarization, the positively charged S4 helix slides upward and several of its positive gating charges cross the focused membrane electric field. This state transition is conformationally coupled to the opening of the channel gate. While this essential mechanism is common to all VSDs, different VSDs display a considerable structural and functional diversity, including the number of the gating charges, the nature of their countercharges, and the range, speed, and voltage dependence of the S4 movement upon activation. Here, we review these differences and discuss how they might function to determine the distinct gating properties of voltage-gated ion channels.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage-sensing domains: structural and functional diversity.\",\"authors\":\"Martin C Heiss, Bernhard E Flucher\",\"doi\":\"10.1007/s00249-025-01797-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Voltage-sensing domains (VSDs) are structural modules of voltage-gated ion channels, which sense changes in the membrane potential and, in response, open and close the channel's ion conduction pore. VSDs comprise a bundle of four antiparallel transmembrane helices (S1-S4). Their basic function is well described by the sliding helix model. Upon membrane depolarization, the positively charged S4 helix slides upward and several of its positive gating charges cross the focused membrane electric field. This state transition is conformationally coupled to the opening of the channel gate. While this essential mechanism is common to all VSDs, different VSDs display a considerable structural and functional diversity, including the number of the gating charges, the nature of their countercharges, and the range, speed, and voltage dependence of the S4 movement upon activation. Here, we review these differences and discuss how they might function to determine the distinct gating properties of voltage-gated ion channels.</p>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1007/s00249-025-01797-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01797-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Voltage-sensing domains: structural and functional diversity.
Voltage-sensing domains (VSDs) are structural modules of voltage-gated ion channels, which sense changes in the membrane potential and, in response, open and close the channel's ion conduction pore. VSDs comprise a bundle of four antiparallel transmembrane helices (S1-S4). Their basic function is well described by the sliding helix model. Upon membrane depolarization, the positively charged S4 helix slides upward and several of its positive gating charges cross the focused membrane electric field. This state transition is conformationally coupled to the opening of the channel gate. While this essential mechanism is common to all VSDs, different VSDs display a considerable structural and functional diversity, including the number of the gating charges, the nature of their countercharges, and the range, speed, and voltage dependence of the S4 movement upon activation. Here, we review these differences and discuss how they might function to determine the distinct gating properties of voltage-gated ion channels.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.