{"title":"乳腺癌中肠道微生物代谢物基质金属蛋白酶-3轴的解码:多组学和网络药理学研究。","authors":"Tangyu Yuan, Jiayin Xing, Pengtao Liu","doi":"10.1007/s11030-025-11351-y","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a malignant tumor originating from the breast epithelium, and emerging evidence suggests that the gut microbiota influences its development, progression, and treatment, although its role remains underexplored. In this study, we employed an integrative multi-omics framework that combined network pharmacology, machine learning, SHapley Additive exPlanations (SHAP), and single-cell RNA sequencing to systematically investigate key interactions between microbial metabolites and their targets. Core regulators were further validated using Mendelian randomization (MR), while molecular docking was applied to evaluate the binding affinity of candidate metabolites. Matrix metalloproteinase-3 (MMP3) emerged as a central molecule involved in multiple cancer-related signaling pathways, including PI3K-AKT, MAPK, and HIF-1, with promising druggable potential. Eight non-toxic gut microbial metabolites-such as indole-3-propionic acid, glycocholic acid, and 4-hydroxyphenylpyruvate-demonstrated strong binding affinity to MMP3 and favorable pharmacokinetic properties, highlighting a previously unappreciated microbiota-MMP3 axis as a promising avenue for therapeutic intervention in breast cancer. These findings provide a basis for subsequent in vitro and in vivo validation and underscore the translational potential of the identified microbial metabolites, thereby supporting the development of microbiome-derived therapeutic strategies for breast cancer.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the gut microbiota metabolite-matrix metalloproteinase-3 axis in breast cancer: a multi-omics and network pharmacology study.\",\"authors\":\"Tangyu Yuan, Jiayin Xing, Pengtao Liu\",\"doi\":\"10.1007/s11030-025-11351-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is a malignant tumor originating from the breast epithelium, and emerging evidence suggests that the gut microbiota influences its development, progression, and treatment, although its role remains underexplored. In this study, we employed an integrative multi-omics framework that combined network pharmacology, machine learning, SHapley Additive exPlanations (SHAP), and single-cell RNA sequencing to systematically investigate key interactions between microbial metabolites and their targets. Core regulators were further validated using Mendelian randomization (MR), while molecular docking was applied to evaluate the binding affinity of candidate metabolites. Matrix metalloproteinase-3 (MMP3) emerged as a central molecule involved in multiple cancer-related signaling pathways, including PI3K-AKT, MAPK, and HIF-1, with promising druggable potential. Eight non-toxic gut microbial metabolites-such as indole-3-propionic acid, glycocholic acid, and 4-hydroxyphenylpyruvate-demonstrated strong binding affinity to MMP3 and favorable pharmacokinetic properties, highlighting a previously unappreciated microbiota-MMP3 axis as a promising avenue for therapeutic intervention in breast cancer. These findings provide a basis for subsequent in vitro and in vivo validation and underscore the translational potential of the identified microbial metabolites, thereby supporting the development of microbiome-derived therapeutic strategies for breast cancer.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11351-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11351-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Decoding the gut microbiota metabolite-matrix metalloproteinase-3 axis in breast cancer: a multi-omics and network pharmacology study.
Breast cancer is a malignant tumor originating from the breast epithelium, and emerging evidence suggests that the gut microbiota influences its development, progression, and treatment, although its role remains underexplored. In this study, we employed an integrative multi-omics framework that combined network pharmacology, machine learning, SHapley Additive exPlanations (SHAP), and single-cell RNA sequencing to systematically investigate key interactions between microbial metabolites and their targets. Core regulators were further validated using Mendelian randomization (MR), while molecular docking was applied to evaluate the binding affinity of candidate metabolites. Matrix metalloproteinase-3 (MMP3) emerged as a central molecule involved in multiple cancer-related signaling pathways, including PI3K-AKT, MAPK, and HIF-1, with promising druggable potential. Eight non-toxic gut microbial metabolites-such as indole-3-propionic acid, glycocholic acid, and 4-hydroxyphenylpyruvate-demonstrated strong binding affinity to MMP3 and favorable pharmacokinetic properties, highlighting a previously unappreciated microbiota-MMP3 axis as a promising avenue for therapeutic intervention in breast cancer. These findings provide a basis for subsequent in vitro and in vivo validation and underscore the translational potential of the identified microbial metabolites, thereby supporting the development of microbiome-derived therapeutic strategies for breast cancer.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;