Katie Gates, Jonathan Sandoval-Castillo, Julian E Beaman, Karen Burke da Silva, Frédérik Saltré, Katherine Belov, Carolyn J Hogg, Corey J A Bradshaw, Luciano B Beheregaray
{"title":"保护方舟:大量岛屿考拉种群的基因组侵蚀和近亲繁殖。","authors":"Katie Gates, Jonathan Sandoval-Castillo, Julian E Beaman, Karen Burke da Silva, Frédérik Saltré, Katherine Belov, Carolyn J Hogg, Corey J A Bradshaw, Luciano B Beheregaray","doi":"10.1111/mec.70097","DOIUrl":null,"url":null,"abstract":"<p><p>The persistence of many threatened species depends on isolated habitat patches such as conservation parks, fenced reserves, and islands. While these 'conservation arks' provide refuge from many contemporary threats, they can also pose risks of genetic diversity loss and inbreeding depression, further exacerbating extinction risk. A pertinent example is the Kangaroo Island koala population in South Australia that originated from a few translocated founding individuals in the 1920s but now sustains a large population with a low prevalence of infectious disease. We investigated the extent and consequences of founder effects on genomic diversity, inbreeding, and adaptive potential in Kangaroo Island koalas by comparing them with mainland Australian populations using high-coverage whole genomes. Our findings support sharp, recent declines in effective population sizes (N<sub>e</sub>) in both mainland and Kangaroo Island populations. However, Kangaroo Island koalas had much lower individual and population-level diversity. Together with longer and more numerous runs of homozygosity and an increased proportion of homozygous genetic load, these results support the hypothesis that a severe bottleneck has contributed to inbreeding and maladaptation in Kangaroo Island koalas. While Kangaroo Island has the potential to conserve a viable population of koalas, we recommend genetic rescue to restore diversity and mitigate inbreeding depression in this isolated population. Our results emphasise the need for longitudinal genomic monitoring and genetic management to maintain long-term viability and resilience in potential conservation arks. Understanding the demographic history of such populations will help inform future conservation aimed at preventing genetic erosion and preserving biodiversity.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e70097"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation Arks: Genomic Erosion and Inbreeding in an Abundant Island Population of Koalas.\",\"authors\":\"Katie Gates, Jonathan Sandoval-Castillo, Julian E Beaman, Karen Burke da Silva, Frédérik Saltré, Katherine Belov, Carolyn J Hogg, Corey J A Bradshaw, Luciano B Beheregaray\",\"doi\":\"10.1111/mec.70097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The persistence of many threatened species depends on isolated habitat patches such as conservation parks, fenced reserves, and islands. While these 'conservation arks' provide refuge from many contemporary threats, they can also pose risks of genetic diversity loss and inbreeding depression, further exacerbating extinction risk. A pertinent example is the Kangaroo Island koala population in South Australia that originated from a few translocated founding individuals in the 1920s but now sustains a large population with a low prevalence of infectious disease. We investigated the extent and consequences of founder effects on genomic diversity, inbreeding, and adaptive potential in Kangaroo Island koalas by comparing them with mainland Australian populations using high-coverage whole genomes. Our findings support sharp, recent declines in effective population sizes (N<sub>e</sub>) in both mainland and Kangaroo Island populations. However, Kangaroo Island koalas had much lower individual and population-level diversity. Together with longer and more numerous runs of homozygosity and an increased proportion of homozygous genetic load, these results support the hypothesis that a severe bottleneck has contributed to inbreeding and maladaptation in Kangaroo Island koalas. While Kangaroo Island has the potential to conserve a viable population of koalas, we recommend genetic rescue to restore diversity and mitigate inbreeding depression in this isolated population. Our results emphasise the need for longitudinal genomic monitoring and genetic management to maintain long-term viability and resilience in potential conservation arks. Understanding the demographic history of such populations will help inform future conservation aimed at preventing genetic erosion and preserving biodiversity.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e70097\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.70097\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.70097","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Conservation Arks: Genomic Erosion and Inbreeding in an Abundant Island Population of Koalas.
The persistence of many threatened species depends on isolated habitat patches such as conservation parks, fenced reserves, and islands. While these 'conservation arks' provide refuge from many contemporary threats, they can also pose risks of genetic diversity loss and inbreeding depression, further exacerbating extinction risk. A pertinent example is the Kangaroo Island koala population in South Australia that originated from a few translocated founding individuals in the 1920s but now sustains a large population with a low prevalence of infectious disease. We investigated the extent and consequences of founder effects on genomic diversity, inbreeding, and adaptive potential in Kangaroo Island koalas by comparing them with mainland Australian populations using high-coverage whole genomes. Our findings support sharp, recent declines in effective population sizes (Ne) in both mainland and Kangaroo Island populations. However, Kangaroo Island koalas had much lower individual and population-level diversity. Together with longer and more numerous runs of homozygosity and an increased proportion of homozygous genetic load, these results support the hypothesis that a severe bottleneck has contributed to inbreeding and maladaptation in Kangaroo Island koalas. While Kangaroo Island has the potential to conserve a viable population of koalas, we recommend genetic rescue to restore diversity and mitigate inbreeding depression in this isolated population. Our results emphasise the need for longitudinal genomic monitoring and genetic management to maintain long-term viability and resilience in potential conservation arks. Understanding the demographic history of such populations will help inform future conservation aimed at preventing genetic erosion and preserving biodiversity.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms