Takeshi Nakagawa, Melita Menelaou, Martina Vrankić
{"title":"镧系掺杂BaTiO3的结构与性能研究","authors":"Takeshi Nakagawa, Melita Menelaou, Martina Vrankić","doi":"10.1002/apxr.202500006","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) ferroelectrics, especially lead-free materials such as barium titanate, BaTiO<sub>3</sub>, hold significant promise for advanced electronics due to their unique nanoscale properties. Doping BaTiO<sub>3</sub> with lanthanides (Ln) can enable fine-tuning of electrical and dielectric properties by substituting Ba<sup>2</sup>⁺ (A-site) or Ti⁴⁺ (B-site) in the perovskite structure. A-site doping enhances dielectric properties, while doping the B-site changes the polarization and thermal stability. The site preference depends on the ionic radii and charge compensation mechanisms, which include oxygen vacancies and self-compensation processes. This research delivers the structural and microstructural aspects of BaTiO<sub>3</sub> doped with members of the Ln family from La to Lu, emphasizing their superior properties compared to undoped BaTiO<sub>3</sub>. Notably, the Ln dopants significantly influence the ferroelectric, ferromagnetic, luminescent, and piezocatalytic properties, where the ionic radius, doping mechanisms, defect formation, and preparation methods play a role. Theoretical studies and advanced characterization data indicate that Ln dopants improve the performance of BaTiO<sub>3</sub> by stabilizing structural defects, affecting site occupancy, and improving insulation resistance. Understanding the defect chemistry and Ln ion distribution in Ln-doped BaTiO<sub>3</sub> systems can help optimize their functional properties for next-generation technologies and sustainable energy applications.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500006","citationCount":"0","resultStr":"{\"title\":\"Showcasing the Structure and Properties of Lanthanide-Doped BaTiO3\",\"authors\":\"Takeshi Nakagawa, Melita Menelaou, Martina Vrankić\",\"doi\":\"10.1002/apxr.202500006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional (2D) ferroelectrics, especially lead-free materials such as barium titanate, BaTiO<sub>3</sub>, hold significant promise for advanced electronics due to their unique nanoscale properties. Doping BaTiO<sub>3</sub> with lanthanides (Ln) can enable fine-tuning of electrical and dielectric properties by substituting Ba<sup>2</sup>⁺ (A-site) or Ti⁴⁺ (B-site) in the perovskite structure. A-site doping enhances dielectric properties, while doping the B-site changes the polarization and thermal stability. The site preference depends on the ionic radii and charge compensation mechanisms, which include oxygen vacancies and self-compensation processes. This research delivers the structural and microstructural aspects of BaTiO<sub>3</sub> doped with members of the Ln family from La to Lu, emphasizing their superior properties compared to undoped BaTiO<sub>3</sub>. Notably, the Ln dopants significantly influence the ferroelectric, ferromagnetic, luminescent, and piezocatalytic properties, where the ionic radius, doping mechanisms, defect formation, and preparation methods play a role. Theoretical studies and advanced characterization data indicate that Ln dopants improve the performance of BaTiO<sub>3</sub> by stabilizing structural defects, affecting site occupancy, and improving insulation resistance. Understanding the defect chemistry and Ln ion distribution in Ln-doped BaTiO<sub>3</sub> systems can help optimize their functional properties for next-generation technologies and sustainable energy applications.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Showcasing the Structure and Properties of Lanthanide-Doped BaTiO3
Two-dimensional (2D) ferroelectrics, especially lead-free materials such as barium titanate, BaTiO3, hold significant promise for advanced electronics due to their unique nanoscale properties. Doping BaTiO3 with lanthanides (Ln) can enable fine-tuning of electrical and dielectric properties by substituting Ba2⁺ (A-site) or Ti⁴⁺ (B-site) in the perovskite structure. A-site doping enhances dielectric properties, while doping the B-site changes the polarization and thermal stability. The site preference depends on the ionic radii and charge compensation mechanisms, which include oxygen vacancies and self-compensation processes. This research delivers the structural and microstructural aspects of BaTiO3 doped with members of the Ln family from La to Lu, emphasizing their superior properties compared to undoped BaTiO3. Notably, the Ln dopants significantly influence the ferroelectric, ferromagnetic, luminescent, and piezocatalytic properties, where the ionic radius, doping mechanisms, defect formation, and preparation methods play a role. Theoretical studies and advanced characterization data indicate that Ln dopants improve the performance of BaTiO3 by stabilizing structural defects, affecting site occupancy, and improving insulation resistance. Understanding the defect chemistry and Ln ion distribution in Ln-doped BaTiO3 systems can help optimize their functional properties for next-generation technologies and sustainable energy applications.