镧系掺杂BaTiO3的结构与性能研究

IF 2.8
Takeshi Nakagawa, Melita Menelaou, Martina Vrankić
{"title":"镧系掺杂BaTiO3的结构与性能研究","authors":"Takeshi Nakagawa,&nbsp;Melita Menelaou,&nbsp;Martina Vrankić","doi":"10.1002/apxr.202500006","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) ferroelectrics, especially lead-free materials such as barium titanate, BaTiO<sub>3</sub>, hold significant promise for advanced electronics due to their unique nanoscale properties. Doping BaTiO<sub>3</sub> with lanthanides (Ln) can enable fine-tuning of electrical and dielectric properties by substituting Ba<sup>2</sup>⁺ (A-site) or Ti⁴⁺ (B-site) in the perovskite structure. A-site doping enhances dielectric properties, while doping the B-site changes the polarization and thermal stability. The site preference depends on the ionic radii and charge compensation mechanisms, which include oxygen vacancies and self-compensation processes. This research delivers the structural and microstructural aspects of BaTiO<sub>3</sub> doped with members of the Ln family from La to Lu, emphasizing their superior properties compared to undoped BaTiO<sub>3</sub>. Notably, the Ln dopants significantly influence the ferroelectric, ferromagnetic, luminescent, and piezocatalytic properties, where the ionic radius, doping mechanisms, defect formation, and preparation methods play a role. Theoretical studies and advanced characterization data indicate that Ln dopants improve the performance of BaTiO<sub>3</sub> by stabilizing structural defects, affecting site occupancy, and improving insulation resistance. Understanding the defect chemistry and Ln ion distribution in Ln-doped BaTiO<sub>3</sub> systems can help optimize their functional properties for next-generation technologies and sustainable energy applications.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500006","citationCount":"0","resultStr":"{\"title\":\"Showcasing the Structure and Properties of Lanthanide-Doped BaTiO3\",\"authors\":\"Takeshi Nakagawa,&nbsp;Melita Menelaou,&nbsp;Martina Vrankić\",\"doi\":\"10.1002/apxr.202500006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional (2D) ferroelectrics, especially lead-free materials such as barium titanate, BaTiO<sub>3</sub>, hold significant promise for advanced electronics due to their unique nanoscale properties. Doping BaTiO<sub>3</sub> with lanthanides (Ln) can enable fine-tuning of electrical and dielectric properties by substituting Ba<sup>2</sup>⁺ (A-site) or Ti⁴⁺ (B-site) in the perovskite structure. A-site doping enhances dielectric properties, while doping the B-site changes the polarization and thermal stability. The site preference depends on the ionic radii and charge compensation mechanisms, which include oxygen vacancies and self-compensation processes. This research delivers the structural and microstructural aspects of BaTiO<sub>3</sub> doped with members of the Ln family from La to Lu, emphasizing their superior properties compared to undoped BaTiO<sub>3</sub>. Notably, the Ln dopants significantly influence the ferroelectric, ferromagnetic, luminescent, and piezocatalytic properties, where the ionic radius, doping mechanisms, defect formation, and preparation methods play a role. Theoretical studies and advanced characterization data indicate that Ln dopants improve the performance of BaTiO<sub>3</sub> by stabilizing structural defects, affecting site occupancy, and improving insulation resistance. Understanding the defect chemistry and Ln ion distribution in Ln-doped BaTiO<sub>3</sub> systems can help optimize their functional properties for next-generation technologies and sustainable energy applications.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)铁电体,特别是无铅材料,如钛酸钡,BaTiO3,由于其独特的纳米级特性,在先进电子领域具有重要的前景。用镧系元素(Ln)掺杂BaTiO3可以通过在钙钛矿结构中取代Ba2⁺(a位)或Ti⁺(b位)来实现电学和介电性能的微调。掺杂a位提高了材料的介电性能,而掺杂b位则改变了材料的极化和热稳定性。位置偏好取决于离子半径和电荷补偿机制,包括氧空位和自补偿过程。本研究提供了掺杂从La到Lu的Ln家族成员的BaTiO3的结构和微观结构方面,强调了它们与未掺杂的BaTiO3相比的优越性能。值得注意的是,离子半径、掺杂机制、缺陷形成和制备方法显著影响了镧掺杂材料的铁电、铁磁、发光和压催化性能。理论研究和先进的表征数据表明,Ln掺杂剂通过稳定结构缺陷、影响位点占用和提高绝缘电阻来改善BaTiO3的性能。了解掺杂镧的BaTiO3体系的缺陷化学和Ln离子分布有助于优化其功能特性,为下一代技术和可持续能源应用提供帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Showcasing the Structure and Properties of Lanthanide-Doped BaTiO3

Showcasing the Structure and Properties of Lanthanide-Doped BaTiO3

Showcasing the Structure and Properties of Lanthanide-Doped BaTiO3

Showcasing the Structure and Properties of Lanthanide-Doped BaTiO3

Two-dimensional (2D) ferroelectrics, especially lead-free materials such as barium titanate, BaTiO3, hold significant promise for advanced electronics due to their unique nanoscale properties. Doping BaTiO3 with lanthanides (Ln) can enable fine-tuning of electrical and dielectric properties by substituting Ba2⁺ (A-site) or Ti⁴⁺ (B-site) in the perovskite structure. A-site doping enhances dielectric properties, while doping the B-site changes the polarization and thermal stability. The site preference depends on the ionic radii and charge compensation mechanisms, which include oxygen vacancies and self-compensation processes. This research delivers the structural and microstructural aspects of BaTiO3 doped with members of the Ln family from La to Lu, emphasizing their superior properties compared to undoped BaTiO3. Notably, the Ln dopants significantly influence the ferroelectric, ferromagnetic, luminescent, and piezocatalytic properties, where the ionic radius, doping mechanisms, defect formation, and preparation methods play a role. Theoretical studies and advanced characterization data indicate that Ln dopants improve the performance of BaTiO3 by stabilizing structural defects, affecting site occupancy, and improving insulation resistance. Understanding the defect chemistry and Ln ion distribution in Ln-doped BaTiO3 systems can help optimize their functional properties for next-generation technologies and sustainable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信