锗缓冲不连续(111)面v型槽硅衬底上的砷化镓生长

IF 2.8
Makhayeni Mtunzi, Hui Jia, Mateus G. Masteghin, Yaonan Hou, Haotian Zeng, Huiwen Deng, Jae-Seong Park, Chong Chen, Jun Li, Xingzhao Yan, Ilias Skandalos, Frederic Gardes, Mingchu Tang, Alwyn Seeds, Huiyun Liu
{"title":"锗缓冲不连续(111)面v型槽硅衬底上的砷化镓生长","authors":"Makhayeni Mtunzi,&nbsp;Hui Jia,&nbsp;Mateus G. Masteghin,&nbsp;Yaonan Hou,&nbsp;Haotian Zeng,&nbsp;Huiwen Deng,&nbsp;Jae-Seong Park,&nbsp;Chong Chen,&nbsp;Jun Li,&nbsp;Xingzhao Yan,&nbsp;Ilias Skandalos,&nbsp;Frederic Gardes,&nbsp;Mingchu Tang,&nbsp;Alwyn Seeds,&nbsp;Huiyun Liu","doi":"10.1002/apxr.202500026","DOIUrl":null,"url":null,"abstract":"<p>The propagation of antiphase boundaries (APBs) and threading dislocations (TDs) poses a significant impediment to the realisation of high-quality group III–V semiconductors grown on group IV platforms. The complete annihilation of APBs and a substantial reduction in threading dislocation density (TDD) are essential for achieving high-efficiency III–V devices compatible with complementary metal-oxide semiconductor (CMOS) technology. In this study, a novel growth technique is proposed and developed to fabricate a faceted germanium (Ge) buffer on a discontinuous (111)-faceted V-groove silicon (Si) substrate with a 500 nm flat ridge width. Subsequently, a GaAs buffer is grown on the Ge/V-groove Si virtual substrate using a ramped temperature growth process to minimise the prevalence of line and planar defects in the buffer structure. An APB-free GaAs buffer is successfully achieved, as confirmed by cross-sectional and plan-view transmission electron microscopy (TEM) and atomic force microscopy (AFM) analyses. The faceted Ge buffer layer obtained through this innovative approach alleviates the stringent fabrication requirements and intricate processing typically associated with conventional continuous V-groove Si substrates. This advancement facilitates the development of photonic integrated circuits by providing a simplified and efficient alternative substrate solution.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"4 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500026","citationCount":"0","resultStr":"{\"title\":\"GaAs Growth on Ge-Buffered Discontinuous (111)-Faceted V-Groove Silicon Substrates\",\"authors\":\"Makhayeni Mtunzi,&nbsp;Hui Jia,&nbsp;Mateus G. Masteghin,&nbsp;Yaonan Hou,&nbsp;Haotian Zeng,&nbsp;Huiwen Deng,&nbsp;Jae-Seong Park,&nbsp;Chong Chen,&nbsp;Jun Li,&nbsp;Xingzhao Yan,&nbsp;Ilias Skandalos,&nbsp;Frederic Gardes,&nbsp;Mingchu Tang,&nbsp;Alwyn Seeds,&nbsp;Huiyun Liu\",\"doi\":\"10.1002/apxr.202500026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The propagation of antiphase boundaries (APBs) and threading dislocations (TDs) poses a significant impediment to the realisation of high-quality group III–V semiconductors grown on group IV platforms. The complete annihilation of APBs and a substantial reduction in threading dislocation density (TDD) are essential for achieving high-efficiency III–V devices compatible with complementary metal-oxide semiconductor (CMOS) technology. In this study, a novel growth technique is proposed and developed to fabricate a faceted germanium (Ge) buffer on a discontinuous (111)-faceted V-groove silicon (Si) substrate with a 500 nm flat ridge width. Subsequently, a GaAs buffer is grown on the Ge/V-groove Si virtual substrate using a ramped temperature growth process to minimise the prevalence of line and planar defects in the buffer structure. An APB-free GaAs buffer is successfully achieved, as confirmed by cross-sectional and plan-view transmission electron microscopy (TEM) and atomic force microscopy (AFM) analyses. The faceted Ge buffer layer obtained through this innovative approach alleviates the stringent fabrication requirements and intricate processing typically associated with conventional continuous V-groove Si substrates. This advancement facilitates the development of photonic integrated circuits by providing a simplified and efficient alternative substrate solution.</p>\",\"PeriodicalId\":100035,\"journal\":{\"name\":\"Advanced Physics Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202500026\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Physics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/apxr.202500026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

反相边界(apb)和螺纹位错(td)的传播是在IV族平台上实现高质量III-V族半导体的重要障碍。apb的完全湮灭和螺纹位错密度(TDD)的大幅降低是实现与互补金属氧化物半导体(CMOS)技术兼容的高效率III-V器件的必要条件。在这项研究中,提出并开发了一种新的生长技术,用于在具有500 nm平脊宽度的不连续(111)面v槽硅(Si)衬底上制造面锗(Ge)缓冲材料。随后,在Ge/ v槽Si虚拟衬底上使用升温生长过程生长GaAs缓冲器,以最大限度地减少缓冲结构中线和面缺陷的流行。通过横断面、平面透射电镜(TEM)和原子力显微镜(AFM)分析证实,成功制备了不含apb的GaAs缓冲液。通过这种创新方法获得的多面Ge缓冲层减轻了传统连续v槽Si衬底的严格制造要求和复杂的加工过程。这一进步通过提供一种简化和高效的替代衬底解决方案,促进了光子集成电路的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GaAs Growth on Ge-Buffered Discontinuous (111)-Faceted V-Groove Silicon Substrates

GaAs Growth on Ge-Buffered Discontinuous (111)-Faceted V-Groove Silicon Substrates

GaAs Growth on Ge-Buffered Discontinuous (111)-Faceted V-Groove Silicon Substrates

GaAs Growth on Ge-Buffered Discontinuous (111)-Faceted V-Groove Silicon Substrates

GaAs Growth on Ge-Buffered Discontinuous (111)-Faceted V-Groove Silicon Substrates

The propagation of antiphase boundaries (APBs) and threading dislocations (TDs) poses a significant impediment to the realisation of high-quality group III–V semiconductors grown on group IV platforms. The complete annihilation of APBs and a substantial reduction in threading dislocation density (TDD) are essential for achieving high-efficiency III–V devices compatible with complementary metal-oxide semiconductor (CMOS) technology. In this study, a novel growth technique is proposed and developed to fabricate a faceted germanium (Ge) buffer on a discontinuous (111)-faceted V-groove silicon (Si) substrate with a 500 nm flat ridge width. Subsequently, a GaAs buffer is grown on the Ge/V-groove Si virtual substrate using a ramped temperature growth process to minimise the prevalence of line and planar defects in the buffer structure. An APB-free GaAs buffer is successfully achieved, as confirmed by cross-sectional and plan-view transmission electron microscopy (TEM) and atomic force microscopy (AFM) analyses. The faceted Ge buffer layer obtained through this innovative approach alleviates the stringent fabrication requirements and intricate processing typically associated with conventional continuous V-groove Si substrates. This advancement facilitates the development of photonic integrated circuits by providing a simplified and efficient alternative substrate solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信