Irit Nir, Rachel Armoza-Zvuloni, Hana Barak, Asunción De los Ríos, Christopher P. McKay, Ariel Kushmaro
{"title":"以色列极度干旱的提姆纳河谷砂岩中独特生态系统的生物学、小气候和地质学","authors":"Irit Nir, Rachel Armoza-Zvuloni, Hana Barak, Asunción De los Ríos, Christopher P. McKay, Ariel Kushmaro","doi":"10.1111/1758-2229.70188","DOIUrl":null,"url":null,"abstract":"<p>Microbial endolithic communities in the sandstone rocks of the southern Negev Desert, particularly in Timna Park, were initially discovered by Imre Friedmann and Roseli Ocampo-Friedmann in their pioneering study about 50 years ago. Nonetheless, this harsh microecosystem, dominated by cyanobacterial taxa, raises questions about the adaptive mechanisms that enable the survival of these microorganisms. The present study provides comprehensive data, including extensive precipitation records for the Timna Valley, and multi-year microclimatic data from a colonised site. It includes examinations of rock structure, as well as microscopic and metagenomic analysis. Our findings point to a distinct bacterial endolithic population dominated by the cyanobacterial genus <i>Chroococcidiopsis</i>. Although the taxa are well known, we show here how their exclusive persistence is driven by the sandstone's fine porosity and thermal properties, combined with rare, low-volume precipitation. This highly selective microenvironment highlights how specific rock and climate interactions can filter microbial diversity in hyper-arid deserts. Additionally, it demonstrates an adaptation strategy based on both short-term and decadal-scale dormancy. Thus, it offers new insights for the survival of these unique ecosystems and provides valuable perspectives for astrobiology and the search for evidence of microbial life on Mars.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70188","citationCount":"0","resultStr":"{\"title\":\"The Biology, Microclimate, and Geology of a Distinctive Ecosystem Within the Sandstone of Hyper-Arid Timna Valley, Israel\",\"authors\":\"Irit Nir, Rachel Armoza-Zvuloni, Hana Barak, Asunción De los Ríos, Christopher P. McKay, Ariel Kushmaro\",\"doi\":\"10.1111/1758-2229.70188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbial endolithic communities in the sandstone rocks of the southern Negev Desert, particularly in Timna Park, were initially discovered by Imre Friedmann and Roseli Ocampo-Friedmann in their pioneering study about 50 years ago. Nonetheless, this harsh microecosystem, dominated by cyanobacterial taxa, raises questions about the adaptive mechanisms that enable the survival of these microorganisms. The present study provides comprehensive data, including extensive precipitation records for the Timna Valley, and multi-year microclimatic data from a colonised site. It includes examinations of rock structure, as well as microscopic and metagenomic analysis. Our findings point to a distinct bacterial endolithic population dominated by the cyanobacterial genus <i>Chroococcidiopsis</i>. Although the taxa are well known, we show here how their exclusive persistence is driven by the sandstone's fine porosity and thermal properties, combined with rare, low-volume precipitation. This highly selective microenvironment highlights how specific rock and climate interactions can filter microbial diversity in hyper-arid deserts. Additionally, it demonstrates an adaptation strategy based on both short-term and decadal-scale dormancy. Thus, it offers new insights for the survival of these unique ecosystems and provides valuable perspectives for astrobiology and the search for evidence of microbial life on Mars.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70188\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70188\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1758-2229.70188","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Biology, Microclimate, and Geology of a Distinctive Ecosystem Within the Sandstone of Hyper-Arid Timna Valley, Israel
Microbial endolithic communities in the sandstone rocks of the southern Negev Desert, particularly in Timna Park, were initially discovered by Imre Friedmann and Roseli Ocampo-Friedmann in their pioneering study about 50 years ago. Nonetheless, this harsh microecosystem, dominated by cyanobacterial taxa, raises questions about the adaptive mechanisms that enable the survival of these microorganisms. The present study provides comprehensive data, including extensive precipitation records for the Timna Valley, and multi-year microclimatic data from a colonised site. It includes examinations of rock structure, as well as microscopic and metagenomic analysis. Our findings point to a distinct bacterial endolithic population dominated by the cyanobacterial genus Chroococcidiopsis. Although the taxa are well known, we show here how their exclusive persistence is driven by the sandstone's fine porosity and thermal properties, combined with rare, low-volume precipitation. This highly selective microenvironment highlights how specific rock and climate interactions can filter microbial diversity in hyper-arid deserts. Additionally, it demonstrates an adaptation strategy based on both short-term and decadal-scale dormancy. Thus, it offers new insights for the survival of these unique ecosystems and provides valuable perspectives for astrobiology and the search for evidence of microbial life on Mars.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.