{"title":"百慕达期权的纯双重套期保值方法","authors":"Aurélien Alfonsi, Ahmed Kebaier, Jérôme Lelong","doi":"10.1111/mafi.12460","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte-Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 4","pages":"745-759"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12460","citationCount":"0","resultStr":"{\"title\":\"A Pure Dual Approach for Hedging Bermudan Options\",\"authors\":\"Aurélien Alfonsi, Ahmed Kebaier, Jérôme Lelong\",\"doi\":\"10.1111/mafi.12460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte-Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"35 4\",\"pages\":\"745-759\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12460\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12460\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12460","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte-Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.
期刊介绍:
Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems.
The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.