百慕达期权的纯双重套期保值方法

IF 2.4 3区 经济学 Q3 BUSINESS, FINANCE
Aurélien Alfonsi, Ahmed Kebaier, Jérôme Lelong
{"title":"百慕达期权的纯双重套期保值方法","authors":"Aurélien Alfonsi,&nbsp;Ahmed Kebaier,&nbsp;Jérôme Lelong","doi":"10.1111/mafi.12460","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte-Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"35 4","pages":"745-759"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12460","citationCount":"0","resultStr":"{\"title\":\"A Pure Dual Approach for Hedging Bermudan Options\",\"authors\":\"Aurélien Alfonsi,&nbsp;Ahmed Kebaier,&nbsp;Jérôme Lelong\",\"doi\":\"10.1111/mafi.12460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte-Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"35 4\",\"pages\":\"745-759\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12460\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12460\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12460","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的二元方法来计算百慕大期权的套期保值组合及其初始值。它给出了一个遵循罗杰斯精神的“纯对偶”算法,因为它只依赖于对偶定价公式。关键是将对偶公式重写为超额奖励表示,并将其与严格的凸化技术相结合。然后利用蒙特卡罗方法,逆向求解一系列最小二乘问题,得到对冲策略。我们展示了算法的收敛结果,并在许多不同的百慕大期权上进行了测试。除了直接给出对冲投资组合之外,该算法的优势在于评估在对冲投资组合中包含金融工具的相关性以及再平衡频率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Pure Dual Approach for Hedging Bermudan Options

A Pure Dual Approach for Hedging Bermudan Options

This paper develops a new dual approach to compute the hedging portfolio of a Bermudan option and its initial value. It gives a “purely dual” algorithm following the spirit of Rogers in the sense that it only relies on the dual pricing formula. The key is to rewrite the dual formula as an excess reward representation and to combine it with a strict convexification technique. The hedging strategy is then obtained by using a Monte-Carlo method, solving backward a sequence of least square problems. We show convergence results for our algorithm and test it on many different Bermudan options. Beyond giving directly the hedging portfolio, the strength of the algorithm is to assess both the relevance of including financial instruments in the hedging portfolio and the effect of the rebalancing frequency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信