基于对偶传播泵浦光束的量子增强核磁共振共磁仪

IF 4.3 Q1 OPTICS
Tengyue Wang, Jianli Li, Zhanchao Liu, Jinpeng Peng, Zekun Wu, Xuelei Wang
{"title":"基于对偶传播泵浦光束的量子增强核磁共振共磁仪","authors":"Tengyue Wang,&nbsp;Jianli Li,&nbsp;Zhanchao Liu,&nbsp;Jinpeng Peng,&nbsp;Zekun Wu,&nbsp;Xuelei Wang","doi":"10.1002/qute.202400625","DOIUrl":null,"url":null,"abstract":"<p>Nuclear Magnetic Resonance (NMR) co-magnetometers are advanced quantum sensors capable of measuring angular velocity for inertial navigation. Within the Rb-Xe atomic ensemble, Rb atoms absorb polarized light, decreasing electron spin polarization as the light travels greater distances. This attenuation causes a gradient in Rb spin polarization that severely affects atomic relaxation characteristics and degrades NMR sensors’ performance. Considering atomic diffusion motion, a theoretical simulation model is developed and the spatial distribution of electron spin polarization under the encounter-propagating dual-beam configuration is simulated. The simulation results demonstrate that the proposed dual-beam scheme achieves a more uniform distribution of electron polarization within the atomic vapor cell. Experiments reveal an 18% enhancement in <sup>129</sup>Xe nuclear spin polarization using the dual-beam scheme compared to the conventional single-beam. Through the Fermi contact interaction between optically pumped Rb and Xe atoms, a more uniform spatial distribution of Rb spin polarization reduces the gradient relaxation of Xe atoms and its depolarization effects, thereby significantly enhancing the macroscopic Xe spin polarization and the signal-to-noise ratio (SNR) of NMR sensors. This study presents a new method for improving atomic polarization, significantly enhancing the performance of quantum sensors.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-enhanced NMR Co-Magnetometers Based on Encounter-propagating Pump Beams\",\"authors\":\"Tengyue Wang,&nbsp;Jianli Li,&nbsp;Zhanchao Liu,&nbsp;Jinpeng Peng,&nbsp;Zekun Wu,&nbsp;Xuelei Wang\",\"doi\":\"10.1002/qute.202400625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nuclear Magnetic Resonance (NMR) co-magnetometers are advanced quantum sensors capable of measuring angular velocity for inertial navigation. Within the Rb-Xe atomic ensemble, Rb atoms absorb polarized light, decreasing electron spin polarization as the light travels greater distances. This attenuation causes a gradient in Rb spin polarization that severely affects atomic relaxation characteristics and degrades NMR sensors’ performance. Considering atomic diffusion motion, a theoretical simulation model is developed and the spatial distribution of electron spin polarization under the encounter-propagating dual-beam configuration is simulated. The simulation results demonstrate that the proposed dual-beam scheme achieves a more uniform distribution of electron polarization within the atomic vapor cell. Experiments reveal an 18% enhancement in <sup>129</sup>Xe nuclear spin polarization using the dual-beam scheme compared to the conventional single-beam. Through the Fermi contact interaction between optically pumped Rb and Xe atoms, a more uniform spatial distribution of Rb spin polarization reduces the gradient relaxation of Xe atoms and its depolarization effects, thereby significantly enhancing the macroscopic Xe spin polarization and the signal-to-noise ratio (SNR) of NMR sensors. This study presents a new method for improving atomic polarization, significantly enhancing the performance of quantum sensors.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"8 9\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202400625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202400625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振共磁计是一种先进的量子传感器,能够测量惯性导航中的角速度。在Rb- xe原子系综中,Rb原子吸收偏振光,随着光传播距离的增加,电子自旋极化降低。这种衰减导致Rb自旋极化的梯度,严重影响原子弛豫特性并降低核磁共振传感器的性能。考虑原子扩散运动,建立了理论模拟模型,模拟了电子自旋极化在对偶传播双束构型下的空间分布。仿真结果表明,所提出的双光束方案使原子蒸汽池内的电子极化分布更加均匀。实验表明,与传统的单束方案相比,双束方案可使129Xe核自旋极化增强18%。通过光泵浦Rb和Xe原子之间的费米接触相互作用,Rb自旋极化的更均匀的空间分布减少了Xe原子的梯度弛豫及其退极化效应,从而显著增强了宏观Xe自旋极化和核磁共振传感器的信噪比(SNR)。本研究提出了一种改善原子极化的新方法,大大提高了量子传感器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantum-enhanced NMR Co-Magnetometers Based on Encounter-propagating Pump Beams

Quantum-enhanced NMR Co-Magnetometers Based on Encounter-propagating Pump Beams

Quantum-enhanced NMR Co-Magnetometers Based on Encounter-propagating Pump Beams

Quantum-enhanced NMR Co-Magnetometers Based on Encounter-propagating Pump Beams

Nuclear Magnetic Resonance (NMR) co-magnetometers are advanced quantum sensors capable of measuring angular velocity for inertial navigation. Within the Rb-Xe atomic ensemble, Rb atoms absorb polarized light, decreasing electron spin polarization as the light travels greater distances. This attenuation causes a gradient in Rb spin polarization that severely affects atomic relaxation characteristics and degrades NMR sensors’ performance. Considering atomic diffusion motion, a theoretical simulation model is developed and the spatial distribution of electron spin polarization under the encounter-propagating dual-beam configuration is simulated. The simulation results demonstrate that the proposed dual-beam scheme achieves a more uniform distribution of electron polarization within the atomic vapor cell. Experiments reveal an 18% enhancement in 129Xe nuclear spin polarization using the dual-beam scheme compared to the conventional single-beam. Through the Fermi contact interaction between optically pumped Rb and Xe atoms, a more uniform spatial distribution of Rb spin polarization reduces the gradient relaxation of Xe atoms and its depolarization effects, thereby significantly enhancing the macroscopic Xe spin polarization and the signal-to-noise ratio (SNR) of NMR sensors. This study presents a new method for improving atomic polarization, significantly enhancing the performance of quantum sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信