增强的qmm纠错:展示可逆印迹和鲁棒量子计算的检索

IF 4.3 Q1 OPTICS
Florian Neukart, Eike Marx, Valerii Vinokur, Jeff Titus
{"title":"增强的qmm纠错:展示可逆印迹和鲁棒量子计算的检索","authors":"Florian Neukart,&nbsp;Eike Marx,&nbsp;Valerii Vinokur,&nbsp;Jeff Titus","doi":"10.1002/qute.202500262","DOIUrl":null,"url":null,"abstract":"<p>The first hardware evidence is reported that a Quantum Memory Matrix (QMM) - conceived as a Planck-scale lattice of finite-dimensional memory cells - functions as an ultra-shallow, measurement-free error-suppression layer for noisy intermediate-scale quantum processors. On a seven-qubit IBM transmon device, quantum states are imprint onto local cells with single-qubit <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>y</mi>\n </msub>\n <annotation>$R_y$</annotation>\n </semantics></math> and nearest-neighbor <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>R</mi>\n <mi>Y</mi>\n </mrow>\n <annotation>$CRY$</annotation>\n </semantics></math> gates and later retrieve them through a controlled-SWAP, guaranteeing unitary reversibility. A single imprint–retrieval cycle attains a hardware fidelity of <span></span><math>\n <semantics>\n <mrow>\n <mn>0.73</mn>\n <mo>±</mo>\n <mn>0.01</mn>\n </mrow>\n <annotation>$0.73\\pm 0.01$</annotation>\n </semantics></math>; prepending the same layer to a conventional <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$[3,1,3]$</annotation>\n </semantics></math> repetition code boosts the logical fidelity to <span></span><math>\n <semantics>\n <mrow>\n <mn>0.941</mn>\n <mo>±</mo>\n <mn>0.004</mn>\n </mrow>\n <annotation>$0.941\\pm 0.004$</annotation>\n </semantics></math> - a 32 % improvement obtained without additional CX gates. Incorporating the layer into a variational quantum classifier lowers the final training loss by 35 % and halves run-to-run variance, evidencing its value for hybrid quantum-classical workloads. Noise-calibrated simulations further show that stacking three QMM layers brings the logical error rate to within 20 % of a distance-three surface code while using an order of magnitude fewer qubits. Because the QMM booster is fully unitary and eschews mid-circuit measurement, it is directly compatible with platforms where rapid stabilizer read-out is impractical and provides empirical support for the broader notion that space-time itself may behave as a distributed quantum memory.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202500262","citationCount":"0","resultStr":"{\"title\":\"QMM-Enhanced Error Correction: Demonstrating Reversible Imprinting and Retrieval for Robust Quantum Computation\",\"authors\":\"Florian Neukart,&nbsp;Eike Marx,&nbsp;Valerii Vinokur,&nbsp;Jeff Titus\",\"doi\":\"10.1002/qute.202500262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The first hardware evidence is reported that a Quantum Memory Matrix (QMM) - conceived as a Planck-scale lattice of finite-dimensional memory cells - functions as an ultra-shallow, measurement-free error-suppression layer for noisy intermediate-scale quantum processors. On a seven-qubit IBM transmon device, quantum states are imprint onto local cells with single-qubit <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>y</mi>\\n </msub>\\n <annotation>$R_y$</annotation>\\n </semantics></math> and nearest-neighbor <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mi>R</mi>\\n <mi>Y</mi>\\n </mrow>\\n <annotation>$CRY$</annotation>\\n </semantics></math> gates and later retrieve them through a controlled-SWAP, guaranteeing unitary reversibility. A single imprint–retrieval cycle attains a hardware fidelity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.73</mn>\\n <mo>±</mo>\\n <mn>0.01</mn>\\n </mrow>\\n <annotation>$0.73\\\\pm 0.01$</annotation>\\n </semantics></math>; prepending the same layer to a conventional <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$[3,1,3]$</annotation>\\n </semantics></math> repetition code boosts the logical fidelity to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.941</mn>\\n <mo>±</mo>\\n <mn>0.004</mn>\\n </mrow>\\n <annotation>$0.941\\\\pm 0.004$</annotation>\\n </semantics></math> - a 32 % improvement obtained without additional CX gates. Incorporating the layer into a variational quantum classifier lowers the final training loss by 35 % and halves run-to-run variance, evidencing its value for hybrid quantum-classical workloads. Noise-calibrated simulations further show that stacking three QMM layers brings the logical error rate to within 20 % of a distance-three surface code while using an order of magnitude fewer qubits. Because the QMM booster is fully unitary and eschews mid-circuit measurement, it is directly compatible with platforms where rapid stabilizer read-out is impractical and provides empirical support for the broader notion that space-time itself may behave as a distributed quantum memory.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"8 9\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202500262\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202500262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202500262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

据报道,第一个硬件证据表明,量子记忆矩阵(QMM) -被认为是有限维存储单元的普朗克尺度晶格-作为噪声中等规模量子处理器的超浅,无测量误差抑制层。在一个7量子位的IBM传输设备上,量子态被印在带有单量子位R y$ R_y$和最近邻居CR y$ CRY$门的本地单元上,然后通过受控交换来检索它们。保证幺正可逆性。单个印迹检索周期的硬件保真度为0.73±0.01$ 0.73\pm 0.01$;将同一层添加到常规的[3,1,3]$[3,1,3]$重复码将逻辑保真度提高到0.941±0.004$ 0.941\pm 0.004$,在不增加CX门的情况下提高了32%。将该层结合到变分量子分类器中,最终的训练损失降低了35%,运行到运行的方差减半,证明了它对混合量子经典工作负载的价值。噪声校准的模拟进一步表明,叠加三个QMM层可以使逻辑错误率降低到距离的20%以内——三个表面代码,同时使用的量子比特减少了一个数量级。由于QMM增强器是完全统一的,并且避免了中路测量,因此它直接与快速稳定器读出不切实际的平台兼容,并为更广泛的概念提供了经验支持,即时空本身可能表现为分布式量子存储器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

QMM-Enhanced Error Correction: Demonstrating Reversible Imprinting and Retrieval for Robust Quantum Computation

QMM-Enhanced Error Correction: Demonstrating Reversible Imprinting and Retrieval for Robust Quantum Computation

QMM-Enhanced Error Correction: Demonstrating Reversible Imprinting and Retrieval for Robust Quantum Computation

QMM-Enhanced Error Correction: Demonstrating Reversible Imprinting and Retrieval for Robust Quantum Computation

The first hardware evidence is reported that a Quantum Memory Matrix (QMM) - conceived as a Planck-scale lattice of finite-dimensional memory cells - functions as an ultra-shallow, measurement-free error-suppression layer for noisy intermediate-scale quantum processors. On a seven-qubit IBM transmon device, quantum states are imprint onto local cells with single-qubit R y $R_y$ and nearest-neighbor C R Y $CRY$ gates and later retrieve them through a controlled-SWAP, guaranteeing unitary reversibility. A single imprint–retrieval cycle attains a hardware fidelity of 0.73 ± 0.01 $0.73\pm 0.01$ ; prepending the same layer to a conventional [ 3 , 1 , 3 ] $[3,1,3]$ repetition code boosts the logical fidelity to 0.941 ± 0.004 $0.941\pm 0.004$ - a 32 % improvement obtained without additional CX gates. Incorporating the layer into a variational quantum classifier lowers the final training loss by 35 % and halves run-to-run variance, evidencing its value for hybrid quantum-classical workloads. Noise-calibrated simulations further show that stacking three QMM layers brings the logical error rate to within 20 % of a distance-three surface code while using an order of magnitude fewer qubits. Because the QMM booster is fully unitary and eschews mid-circuit measurement, it is directly compatible with platforms where rapid stabilizer read-out is impractical and provides empirical support for the broader notion that space-time itself may behave as a distributed quantum memory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信