大豆废弃物填料可降解聚己二酸丁二酯/聚乳酸地膜的生物降解及植物生长研究

IF 5.7 Q2 ENERGY & FUELS
Kerry Candlen, Caralyn Conrad, Pongkhun Prommart, Aidan Doherty, Aderlyn Castillo, Yanfen Li, Jo Ann Ratto, Robina Hogan, Wan-Ting Chen
{"title":"大豆废弃物填料可降解聚己二酸丁二酯/聚乳酸地膜的生物降解及植物生长研究","authors":"Kerry Candlen,&nbsp;Caralyn Conrad,&nbsp;Pongkhun Prommart,&nbsp;Aidan Doherty,&nbsp;Aderlyn Castillo,&nbsp;Yanfen Li,&nbsp;Jo Ann Ratto,&nbsp;Robina Hogan,&nbsp;Wan-Ting Chen","doi":"10.1002/aesr.202500068","DOIUrl":null,"url":null,"abstract":"<p>The accumulation of plastic waste in agriculture (e.g., nonbiodegradable polyethylene mulch films) necessitates sustainable alternatives. This study investigates biodegradable mulch films composed of poly(butylene adipate<i>-co</i>-terephthalate) (PBAT), poly(lactic acid) (PLA), and 10% soy waste (predetermined from literature). The PBAT/PLA/Soy films are subjected to accelerated aging, respirometry, and field trials to evaluate their biodegradation, mulch performance, and impact on plant growth. Accelerated aging tests reveal that soy incorporation enhanced hydrolysis and mineralization rates, with PBAT/PLA/Soy films exhibiting earlier weight loss compared to PBAT/PLA films. Field studies demonstrate that plants grown with soy-containing films showed 49% higher plant heights, potentially because soy may act as a biostimulant. Based on ASTM D5338, PBAT/PLA/Soy films show a percent mineralization of 49.6 ± 1.1%, while PBAT/PLA/Soy was lower (44.7 ± 0.8%), indicating that the soy enhances the biodegradation. This research emphasizes the potential of repurposing soy waste as a sustainable additive to enhance the biodegradability of polymer films, addressing environmental concerns and promoting sustainable agriculture. This effort begins to explore the interactions between biodegradable mulch films and plant responses under diverse environmental conditions that can lead to optimization of mulch designs and applications. These findings present a step toward reducing plastic pollution and advancing the use of bioplastics in agriculture.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202500068","citationCount":"0","resultStr":"{\"title\":\"Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic) Acid Mulch Film with Soy Waste Filler for Improved Biodegradation and Plant Growth\",\"authors\":\"Kerry Candlen,&nbsp;Caralyn Conrad,&nbsp;Pongkhun Prommart,&nbsp;Aidan Doherty,&nbsp;Aderlyn Castillo,&nbsp;Yanfen Li,&nbsp;Jo Ann Ratto,&nbsp;Robina Hogan,&nbsp;Wan-Ting Chen\",\"doi\":\"10.1002/aesr.202500068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The accumulation of plastic waste in agriculture (e.g., nonbiodegradable polyethylene mulch films) necessitates sustainable alternatives. This study investigates biodegradable mulch films composed of poly(butylene adipate<i>-co</i>-terephthalate) (PBAT), poly(lactic acid) (PLA), and 10% soy waste (predetermined from literature). The PBAT/PLA/Soy films are subjected to accelerated aging, respirometry, and field trials to evaluate their biodegradation, mulch performance, and impact on plant growth. Accelerated aging tests reveal that soy incorporation enhanced hydrolysis and mineralization rates, with PBAT/PLA/Soy films exhibiting earlier weight loss compared to PBAT/PLA films. Field studies demonstrate that plants grown with soy-containing films showed 49% higher plant heights, potentially because soy may act as a biostimulant. Based on ASTM D5338, PBAT/PLA/Soy films show a percent mineralization of 49.6 ± 1.1%, while PBAT/PLA/Soy was lower (44.7 ± 0.8%), indicating that the soy enhances the biodegradation. This research emphasizes the potential of repurposing soy waste as a sustainable additive to enhance the biodegradability of polymer films, addressing environmental concerns and promoting sustainable agriculture. This effort begins to explore the interactions between biodegradable mulch films and plant responses under diverse environmental conditions that can lead to optimization of mulch designs and applications. These findings present a step toward reducing plastic pollution and advancing the use of bioplastics in agriculture.</p>\",\"PeriodicalId\":29794,\"journal\":{\"name\":\"Advanced Energy and Sustainability Research\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202500068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy and Sustainability Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aesr.202500068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aesr.202500068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

农业中塑料废物的积累(例如,不可生物降解的聚乙烯地膜)需要可持续的替代品。本研究研究了由聚己二酸丁二醇酯(PBAT)、聚乳酸(PLA)和10%的大豆废料(从文献中预先确定)组成的可生物降解地膜。PBAT/PLA/大豆膜经过加速老化、呼吸测定和田间试验,以评估其生物降解、覆盖性能和对植物生长的影响。加速老化试验表明,大豆的掺入提高了水解和矿化率,与PBAT/PLA/ soy膜相比,PBAT/PLA膜表现出更早的失重。实地研究表明,用含大豆薄膜种植的植物株高高出49%,这可能是因为大豆可能起到了生物刺激素的作用。根据ASTM D5338, PBAT/PLA/Soy膜的矿化率为49.6±1.1%,而PBAT/PLA/Soy膜的矿化率较低(44.7±0.8%),表明大豆促进了生物降解。这项研究强调了将大豆废料作为可持续添加剂的潜力,以提高聚合物薄膜的生物降解性,解决环境问题并促进可持续农业。这项工作开始探索生物可降解地膜与植物在不同环境条件下的反应之间的相互作用,从而优化地膜的设计和应用。这些发现为减少塑料污染和促进生物塑料在农业中的使用迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic) Acid Mulch Film with Soy Waste Filler for Improved Biodegradation and Plant Growth

Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic) Acid Mulch Film with Soy Waste Filler for Improved Biodegradation and Plant Growth

Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic) Acid Mulch Film with Soy Waste Filler for Improved Biodegradation and Plant Growth

Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic) Acid Mulch Film with Soy Waste Filler for Improved Biodegradation and Plant Growth

Biodegradable Poly(butylene adipate-co-terephthalate)/Poly(lactic) Acid Mulch Film with Soy Waste Filler for Improved Biodegradation and Plant Growth

The accumulation of plastic waste in agriculture (e.g., nonbiodegradable polyethylene mulch films) necessitates sustainable alternatives. This study investigates biodegradable mulch films composed of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and 10% soy waste (predetermined from literature). The PBAT/PLA/Soy films are subjected to accelerated aging, respirometry, and field trials to evaluate their biodegradation, mulch performance, and impact on plant growth. Accelerated aging tests reveal that soy incorporation enhanced hydrolysis and mineralization rates, with PBAT/PLA/Soy films exhibiting earlier weight loss compared to PBAT/PLA films. Field studies demonstrate that plants grown with soy-containing films showed 49% higher plant heights, potentially because soy may act as a biostimulant. Based on ASTM D5338, PBAT/PLA/Soy films show a percent mineralization of 49.6 ± 1.1%, while PBAT/PLA/Soy was lower (44.7 ± 0.8%), indicating that the soy enhances the biodegradation. This research emphasizes the potential of repurposing soy waste as a sustainable additive to enhance the biodegradability of polymer films, addressing environmental concerns and promoting sustainable agriculture. This effort begins to explore the interactions between biodegradable mulch films and plant responses under diverse environmental conditions that can lead to optimization of mulch designs and applications. These findings present a step toward reducing plastic pollution and advancing the use of bioplastics in agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信