Haoran Ma, Yajun Xu, Jun Zhao, Jun Wu, Luanhong Sun, Jinjie Zheng, Wei Zhang
{"title":"TiO2/SnO2双层电子传输层对钙钛矿太阳能电池性能的数值优化","authors":"Haoran Ma, Yajun Xu, Jun Zhao, Jun Wu, Luanhong Sun, Jinjie Zheng, Wei Zhang","doi":"10.1186/s11671-025-04357-w","DOIUrl":null,"url":null,"abstract":"<div><p>To improve charge extraction and address UV-induced degradation in perovskite solar cells, we propose and numerically evaluate a TiO<sub>2</sub>/SnO<sub>2</sub> bilayer electron transport layer (ETL) architecture. Using physics-based simulation, we systematically analyze the influence of individual and combined ETL thicknesses on key parameters. The results identify an optimal configuration of 100 nm TiO<sub>2</sub> and 20 nm SnO<sub>2</sub>, which minimizes interfacial recombination and enhances electron transport. Furthermore, CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> is employed as a lead-free absorber layer. Simulation results demonstrate a notable efficiency improvement upto 20.80%. The experimental results verified that the bi-layer Sn-based perovskite can achieve a conversion efficiency of 10.3%. This study highlights the potential of simulation-guided design in optimizing multilayer ETL structures and advancing environmentally friendly, high-efficiency perovskite photovoltaics.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04357-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Numerical optimization of TiO2/SnO2 bilayer electron transport layers for enhanced perovskite solar cell performance\",\"authors\":\"Haoran Ma, Yajun Xu, Jun Zhao, Jun Wu, Luanhong Sun, Jinjie Zheng, Wei Zhang\",\"doi\":\"10.1186/s11671-025-04357-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve charge extraction and address UV-induced degradation in perovskite solar cells, we propose and numerically evaluate a TiO<sub>2</sub>/SnO<sub>2</sub> bilayer electron transport layer (ETL) architecture. Using physics-based simulation, we systematically analyze the influence of individual and combined ETL thicknesses on key parameters. The results identify an optimal configuration of 100 nm TiO<sub>2</sub> and 20 nm SnO<sub>2</sub>, which minimizes interfacial recombination and enhances electron transport. Furthermore, CH<sub>3</sub>NH<sub>3</sub>SnI<sub>3</sub> is employed as a lead-free absorber layer. Simulation results demonstrate a notable efficiency improvement upto 20.80%. The experimental results verified that the bi-layer Sn-based perovskite can achieve a conversion efficiency of 10.3%. This study highlights the potential of simulation-guided design in optimizing multilayer ETL structures and advancing environmentally friendly, high-efficiency perovskite photovoltaics.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04357-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04357-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04357-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical optimization of TiO2/SnO2 bilayer electron transport layers for enhanced perovskite solar cell performance
To improve charge extraction and address UV-induced degradation in perovskite solar cells, we propose and numerically evaluate a TiO2/SnO2 bilayer electron transport layer (ETL) architecture. Using physics-based simulation, we systematically analyze the influence of individual and combined ETL thicknesses on key parameters. The results identify an optimal configuration of 100 nm TiO2 and 20 nm SnO2, which minimizes interfacial recombination and enhances electron transport. Furthermore, CH3NH3SnI3 is employed as a lead-free absorber layer. Simulation results demonstrate a notable efficiency improvement upto 20.80%. The experimental results verified that the bi-layer Sn-based perovskite can achieve a conversion efficiency of 10.3%. This study highlights the potential of simulation-guided design in optimizing multilayer ETL structures and advancing environmentally friendly, high-efficiency perovskite photovoltaics.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.