b掺杂Co纳米团簇在Cu金属有机框架内的集成用于高效电催化硝酸还原

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-08-26 DOI:10.1039/D5GC03112E
Ran Li, Hui Li, Yuxin Liu, Jing Luo, Qi Sui, Keke Wang, Jiarui Xia and Yi Jiang
{"title":"b掺杂Co纳米团簇在Cu金属有机框架内的集成用于高效电催化硝酸还原","authors":"Ran Li, Hui Li, Yuxin Liu, Jing Luo, Qi Sui, Keke Wang, Jiarui Xia and Yi Jiang","doi":"10.1039/D5GC03112E","DOIUrl":null,"url":null,"abstract":"<p >The increasing nitrate pollution from agriculture and industry requires sustainable solutions. The electrocatalytic nitrate reduction reaction (e-NO<small><sub>3</sub></small><small><sup>−</sup></small>RR) has emerged as a dual-benefit strategy for environmental remediation and NH<small><sub>3</sub></small> synthesis. Despite the cluster catalysts combining the advantages of single atoms and multi-site nanocatalysts, metal aggregation can limit performance. We showed a synergistic catalyst design by embedding B-doped Co nanoclusters in a conductive Cu-HHTP MOF, resulting in CoB@Cu-HHTP with outstanding e-NO<small><sub>3</sub></small><small><sup>−</sup></small>RR performance. It achieves 99% faradaic efficiency (FE) and an NH<small><sub>3</sub></small> production rate of 2797 μmol h<small><sup>−1</sup></small> mg<small><sub>cat</sub></small><small><sup>−1</sup></small> (559 μmol h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>), which is 3.3 times higher than that of pristine Cu-HHTP. <em>In situ</em> Raman spectroscopy and theoretical calculations indicate that the loading of CoB nanoclusters accelerates the generation of NH<small><sub>3</sub></small>. Specifically, the introduction of Co reduces the energy barrier for the adsorption of NO<small><sub>3</sub></small><small><sup>−</sup></small>, promoting the activation of NO<small><sub>3</sub></small><small><sup>−</sup></small> and favoring the formation of NO<small><sub>2</sub></small><small><sup>−</sup></small>. Concurrently, B doping lowers the energy barrier for the conversion of *NO to *NOH, expediting the transformation from NO<small><sub>2</sub></small><small><sup>−</sup></small> to NH<small><sub>3</sub></small>. This method underscores the importance of integrating metal nanoclusters into porous MOFs for designing high-performance synergistic electrocatalysts for the e-NO<small><sub>3</sub></small><small><sup>−</sup></small>RR.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 36","pages":" 11107-11114"},"PeriodicalIF":9.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of B-doped Co nanoclusters within Cu metal–organic frameworks for highly efficient electrocatalytic nitrate reduction\",\"authors\":\"Ran Li, Hui Li, Yuxin Liu, Jing Luo, Qi Sui, Keke Wang, Jiarui Xia and Yi Jiang\",\"doi\":\"10.1039/D5GC03112E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing nitrate pollution from agriculture and industry requires sustainable solutions. The electrocatalytic nitrate reduction reaction (e-NO<small><sub>3</sub></small><small><sup>−</sup></small>RR) has emerged as a dual-benefit strategy for environmental remediation and NH<small><sub>3</sub></small> synthesis. Despite the cluster catalysts combining the advantages of single atoms and multi-site nanocatalysts, metal aggregation can limit performance. We showed a synergistic catalyst design by embedding B-doped Co nanoclusters in a conductive Cu-HHTP MOF, resulting in CoB@Cu-HHTP with outstanding e-NO<small><sub>3</sub></small><small><sup>−</sup></small>RR performance. It achieves 99% faradaic efficiency (FE) and an NH<small><sub>3</sub></small> production rate of 2797 μmol h<small><sup>−1</sup></small> mg<small><sub>cat</sub></small><small><sup>−1</sup></small> (559 μmol h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small>), which is 3.3 times higher than that of pristine Cu-HHTP. <em>In situ</em> Raman spectroscopy and theoretical calculations indicate that the loading of CoB nanoclusters accelerates the generation of NH<small><sub>3</sub></small>. Specifically, the introduction of Co reduces the energy barrier for the adsorption of NO<small><sub>3</sub></small><small><sup>−</sup></small>, promoting the activation of NO<small><sub>3</sub></small><small><sup>−</sup></small> and favoring the formation of NO<small><sub>2</sub></small><small><sup>−</sup></small>. Concurrently, B doping lowers the energy barrier for the conversion of *NO to *NOH, expediting the transformation from NO<small><sub>2</sub></small><small><sup>−</sup></small> to NH<small><sub>3</sub></small>. This method underscores the importance of integrating metal nanoclusters into porous MOFs for designing high-performance synergistic electrocatalysts for the e-NO<small><sub>3</sub></small><small><sup>−</sup></small>RR.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 36\",\"pages\":\" 11107-11114\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc03112e\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d5gc03112e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

来自农业和工业的不断增加的硝酸盐污染需要可持续的解决方案。电催化硝酸还原反应(e-NO3 - RR)已成为一种环境修复和NH3合成的双重效益策略。尽管簇状催化剂结合了单原子和多位点纳米催化剂的优点,但金属聚集会限制其性能。我们通过在导电Cu-HHTP MOF中嵌入b掺杂Co纳米团簇,展示了一种协同催化剂设计,使CoB@Cu-HHTP具有出色的e-NO3−RR性能。得到了99%的法拉第效率(FE), NH3产率为2797 μmol h−1 mgcat−1 (559 μmol h−1 cm−2),是原始Cu-HHTP的3.3倍。原位拉曼光谱和理论计算表明,CoB纳米团簇的加载加速了NH3的生成。具体来说,Co的引入降低了NO3−吸附的能垒,促进了NO3−的活化,有利于NO2−的形成。同时,B掺杂降低了*NO向*NOH转化的能垒,加速了NO2−向NH3的转化。该方法强调了将金属纳米团簇集成到多孔mof中对于设计e-NO3−RR的高性能协同电催化剂的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integration of B-doped Co nanoclusters within Cu metal–organic frameworks for highly efficient electrocatalytic nitrate reduction

Integration of B-doped Co nanoclusters within Cu metal–organic frameworks for highly efficient electrocatalytic nitrate reduction

The increasing nitrate pollution from agriculture and industry requires sustainable solutions. The electrocatalytic nitrate reduction reaction (e-NO3RR) has emerged as a dual-benefit strategy for environmental remediation and NH3 synthesis. Despite the cluster catalysts combining the advantages of single atoms and multi-site nanocatalysts, metal aggregation can limit performance. We showed a synergistic catalyst design by embedding B-doped Co nanoclusters in a conductive Cu-HHTP MOF, resulting in CoB@Cu-HHTP with outstanding e-NO3RR performance. It achieves 99% faradaic efficiency (FE) and an NH3 production rate of 2797 μmol h−1 mgcat−1 (559 μmol h−1 cm−2), which is 3.3 times higher than that of pristine Cu-HHTP. In situ Raman spectroscopy and theoretical calculations indicate that the loading of CoB nanoclusters accelerates the generation of NH3. Specifically, the introduction of Co reduces the energy barrier for the adsorption of NO3, promoting the activation of NO3 and favoring the formation of NO2. Concurrently, B doping lowers the energy barrier for the conversion of *NO to *NOH, expediting the transformation from NO2 to NH3. This method underscores the importance of integrating metal nanoclusters into porous MOFs for designing high-performance synergistic electrocatalysts for the e-NO3RR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信