神经网络辅助培养卡尔曼滤波

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinhui Hu;Haiquan Zhao;Yi Peng
{"title":"神经网络辅助培养卡尔曼滤波","authors":"Jinhui Hu;Haiquan Zhao;Yi Peng","doi":"10.1109/LSP.2025.3599708","DOIUrl":null,"url":null,"abstract":"The cubature Kalman filter (CKF), while theoretically rigorous for nonlinear estimation, often suffers performance degradation due to model-environment mismatches in practice. To address this limitation, we propose CKFNet-a hybrid architecture that synergistically integrates recurrent neural networks (RNNs) with the CKF framework while preserving its cubature principles. Unlike conventional model-driven approaches, CKFNet embeds RNN modules in the prediction phase to dynamically adapt to unmodeled uncertainties, effectively reducing cumulative error propagation through temporal noise correlation learning. Crucially, the architecture maintains CKF’s analytical interpretability via constrained optimization of cubature point distributions. Numerical simulation experiments have confirmed that our proposed CKFNet exhibits superior accuracy and robustness compared to conventional model-based methods and existing KalmanNet algorithms.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3455-3459"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CKFNet: Neural Network Aided Cubature Kalman Filtering\",\"authors\":\"Jinhui Hu;Haiquan Zhao;Yi Peng\",\"doi\":\"10.1109/LSP.2025.3599708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cubature Kalman filter (CKF), while theoretically rigorous for nonlinear estimation, often suffers performance degradation due to model-environment mismatches in practice. To address this limitation, we propose CKFNet-a hybrid architecture that synergistically integrates recurrent neural networks (RNNs) with the CKF framework while preserving its cubature principles. Unlike conventional model-driven approaches, CKFNet embeds RNN modules in the prediction phase to dynamically adapt to unmodeled uncertainties, effectively reducing cumulative error propagation through temporal noise correlation learning. Crucially, the architecture maintains CKF’s analytical interpretability via constrained optimization of cubature point distributions. Numerical simulation experiments have confirmed that our proposed CKFNet exhibits superior accuracy and robustness compared to conventional model-based methods and existing KalmanNet algorithms.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3455-3459\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11129193/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11129193/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

cuature Kalman filter (CKF)虽然在理论上对非线性估计是严格的,但在实际应用中由于模型与环境的不匹配而导致性能下降。为了解决这一限制,我们提出了ckfnet -一种混合架构,它将循环神经网络(rnn)与CKF框架协同集成,同时保留其培养原则。与传统的模型驱动方法不同,CKFNet在预测阶段嵌入RNN模块,以动态适应未建模的不确定性,通过时间噪声相关学习有效减少累积误差传播。至关重要的是,该架构通过对培养点分布的约束优化来保持CKF的分析可解释性。数值模拟实验证实,与传统的基于模型的方法和现有的KalmanNet算法相比,我们提出的CKFNet具有更高的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CKFNet: Neural Network Aided Cubature Kalman Filtering
The cubature Kalman filter (CKF), while theoretically rigorous for nonlinear estimation, often suffers performance degradation due to model-environment mismatches in practice. To address this limitation, we propose CKFNet-a hybrid architecture that synergistically integrates recurrent neural networks (RNNs) with the CKF framework while preserving its cubature principles. Unlike conventional model-driven approaches, CKFNet embeds RNN modules in the prediction phase to dynamically adapt to unmodeled uncertainties, effectively reducing cumulative error propagation through temporal noise correlation learning. Crucially, the architecture maintains CKF’s analytical interpretability via constrained optimization of cubature point distributions. Numerical simulation experiments have confirmed that our proposed CKFNet exhibits superior accuracy and robustness compared to conventional model-based methods and existing KalmanNet algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信