用于频谱制图的域因子非训练深度先验

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Subash Timilsina;Sagar Shrestha;Lei Cheng;Xiao Fu
{"title":"用于频谱制图的域因子非训练深度先验","authors":"Subash Timilsina;Sagar Shrestha;Lei Cheng;Xiao Fu","doi":"10.1109/LSP.2025.3599714","DOIUrl":null,"url":null,"abstract":"<italic>Spectrum cartography</i> (SC) aims to estimate the radio power map of multiple emitters over space and frequency using limited sensor data. Recent advances leverage learned <italic>deep generative models</i> (DGMs) as structural priors, achieving state-of-the-art performance by capturing complex spatial-spectral patterns. However, DGMs require large training datasets and may suffer under distribution shifts. To address these limitations, we propose a <italic>training-free</i> SC approach based on <italic>untrained neural networks</i> (UNNs), which encode structural priors through architectural design. Our custom UNN exploits a spatio-spectral factorization model rooted in the physical structure of radio maps, enabling low sample complexity. Experiments show that our method matches the performance of DGM-based SC without any training data.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3440-3444"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain-Factored Untrained Deep Prior for Spectrum Cartography\",\"authors\":\"Subash Timilsina;Sagar Shrestha;Lei Cheng;Xiao Fu\",\"doi\":\"10.1109/LSP.2025.3599714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Spectrum cartography</i> (SC) aims to estimate the radio power map of multiple emitters over space and frequency using limited sensor data. Recent advances leverage learned <italic>deep generative models</i> (DGMs) as structural priors, achieving state-of-the-art performance by capturing complex spatial-spectral patterns. However, DGMs require large training datasets and may suffer under distribution shifts. To address these limitations, we propose a <italic>training-free</i> SC approach based on <italic>untrained neural networks</i> (UNNs), which encode structural priors through architectural design. Our custom UNN exploits a spatio-spectral factorization model rooted in the physical structure of radio maps, enabling low sample complexity. Experiments show that our method matches the performance of DGM-based SC without any training data.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3440-3444\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11127065/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11127065/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

频谱制图(SC)旨在利用有限的传感器数据估计多个发射器在空间和频率上的无线电功率图。最近的进展利用学习深度生成模型(dgm)作为结构先验,通过捕获复杂的空间光谱模式来实现最先进的性能。然而,dgm需要大量的训练数据集,并且可能受到分布变化的影响。为了解决这些限制,我们提出了一种基于未经训练的神经网络(UNNs)的无训练SC方法,该方法通过建筑设计对结构先验进行编码。我们的定制UNN利用植根于无线电地图物理结构的空间光谱分解模型,实现低样本复杂性。实验表明,在没有任何训练数据的情况下,我们的方法达到了基于dgm的SC的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain-Factored Untrained Deep Prior for Spectrum Cartography
Spectrum cartography (SC) aims to estimate the radio power map of multiple emitters over space and frequency using limited sensor data. Recent advances leverage learned deep generative models (DGMs) as structural priors, achieving state-of-the-art performance by capturing complex spatial-spectral patterns. However, DGMs require large training datasets and may suffer under distribution shifts. To address these limitations, we propose a training-free SC approach based on untrained neural networks (UNNs), which encode structural priors through architectural design. Our custom UNN exploits a spatio-spectral factorization model rooted in the physical structure of radio maps, enabling low sample complexity. Experiments show that our method matches the performance of DGM-based SC without any training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信