多模态情感分析的层次信号校准与细化

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Baojian Ren;Tao Cao;Zhengyang Zhang;Shuchen Bai;Na Liu
{"title":"多模态情感分析的层次信号校准与细化","authors":"Baojian Ren;Tao Cao;Zhengyang Zhang;Shuchen Bai;Na Liu","doi":"10.1109/LSP.2025.3603884","DOIUrl":null,"url":null,"abstract":"To address the issues of noise amplification and feature incompatibility arising from modal heterogeneity in multimodal sentiment analysis, this paper proposes a hierarchical optimization framework. In the first stage, we introduce the Semantic-Guided Calibration Network (SGC-Net), which, through a Dynamic Balancing Regulator (DBR), leverages textual semantics to intelligently weight and calibrate the cross-modal interactions of audio and video, thereby suppressing noise while preserving key dynamics. In the second stage, the Synergistic Refinement Fusion Module (SRF-Module) performs a deep refinement of the fused multi-source features. This module employs a Saliency-Gated Complementor (SGC) to rigorously filter and exchange effective information across streams, ultimately achieving feature de-redundancy and strong complementarity. Extensive experiments on the CMU-MOSI and CMU-MOSEI datasets validate the effectiveness of our method, with the model achieving state-of-the-art performance on key metrics such as binary accuracy (Acc-2: 86.73% on MOSI, 86.52% on MOSEI) and seven-class accuracy (Acc-7: 48.35% on MOSI, 53.81% on MOSEI).","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3450-3454"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Signal Calibration and Refinement for Multimodal Sentiment Analysis\",\"authors\":\"Baojian Ren;Tao Cao;Zhengyang Zhang;Shuchen Bai;Na Liu\",\"doi\":\"10.1109/LSP.2025.3603884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the issues of noise amplification and feature incompatibility arising from modal heterogeneity in multimodal sentiment analysis, this paper proposes a hierarchical optimization framework. In the first stage, we introduce the Semantic-Guided Calibration Network (SGC-Net), which, through a Dynamic Balancing Regulator (DBR), leverages textual semantics to intelligently weight and calibrate the cross-modal interactions of audio and video, thereby suppressing noise while preserving key dynamics. In the second stage, the Synergistic Refinement Fusion Module (SRF-Module) performs a deep refinement of the fused multi-source features. This module employs a Saliency-Gated Complementor (SGC) to rigorously filter and exchange effective information across streams, ultimately achieving feature de-redundancy and strong complementarity. Extensive experiments on the CMU-MOSI and CMU-MOSEI datasets validate the effectiveness of our method, with the model achieving state-of-the-art performance on key metrics such as binary accuracy (Acc-2: 86.73% on MOSI, 86.52% on MOSEI) and seven-class accuracy (Acc-7: 48.35% on MOSI, 53.81% on MOSEI).\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"3450-3454\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11143888/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11143888/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

针对多模态情感分析中由于模态异质性引起的噪声放大和特征不兼容问题,提出了一种分层优化框架。在第一阶段,我们介绍了语义引导校准网络(SGC-Net),该网络通过动态平衡调节器(DBR),利用文本语义智能地加权和校准音频和视频的跨模态交互,从而在保持关键动态的同时抑制噪声。在第二阶段,协同细化融合模块(SRF-Module)对融合的多源特征进行深度细化。该模块采用显著性门控互补(SGC),严格过滤并交换有效信息,最终实现特征去冗余和强互补性。在CMU-MOSI和CMU-MOSEI数据集上进行的大量实验验证了我们方法的有效性,该模型在关键指标上取得了最先进的性能,如二进制精度(Acc-2: MOSI为86.73%,MOSEI为86.52%)和七类精度(Acc-7: MOSI为48.35%,MOSEI为53.81%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Signal Calibration and Refinement for Multimodal Sentiment Analysis
To address the issues of noise amplification and feature incompatibility arising from modal heterogeneity in multimodal sentiment analysis, this paper proposes a hierarchical optimization framework. In the first stage, we introduce the Semantic-Guided Calibration Network (SGC-Net), which, through a Dynamic Balancing Regulator (DBR), leverages textual semantics to intelligently weight and calibrate the cross-modal interactions of audio and video, thereby suppressing noise while preserving key dynamics. In the second stage, the Synergistic Refinement Fusion Module (SRF-Module) performs a deep refinement of the fused multi-source features. This module employs a Saliency-Gated Complementor (SGC) to rigorously filter and exchange effective information across streams, ultimately achieving feature de-redundancy and strong complementarity. Extensive experiments on the CMU-MOSI and CMU-MOSEI datasets validate the effectiveness of our method, with the model achieving state-of-the-art performance on key metrics such as binary accuracy (Acc-2: 86.73% on MOSI, 86.52% on MOSEI) and seven-class accuracy (Acc-7: 48.35% on MOSI, 53.81% on MOSEI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信