众包中具有双向偏好的技能导向稳定任务分配

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Riya Samanta;Soumya K. Ghosh;Sajal K. Das
{"title":"众包中具有双向偏好的技能导向稳定任务分配","authors":"Riya Samanta;Soumya K. Ghosh;Sajal K. Das","doi":"10.1109/TETC.2025.3548672","DOIUrl":null,"url":null,"abstract":"Traditional task assignment approaches in crowdsourcing platforms have focused on optimizing utility for workers or tasks, often neglecting the general utility of the platform and the influence of mutual preference considering skill availability and budget restrictions. This oversight can destabilize task allocation outcomes, diminishing user experience, and, ultimately, the platform’s long-term utility and gives rise to the Worker Task Stable Matching (WTSM) problem. To solve WTSM, we propose the Skill-oriented Stable Task Assignment with a Bi-directional Preference (SoSTA) method based on deferred acceptance strategy. SoSTA aims to generate stable allocations between tasks and workers considering mutually their preferences, optimizing overall utility while following skill and budget constraints. Our study redefines the general utility of the platform as an amalgamation of utilities on both the workers’ and tasks’ sides, incorporating the preference lists of each worker or task based on their respective utility scores for the other party. SoSTA incorporates Multi Skill-oriented Stable Worker Task Mapping (Multi-SoS-WTM) algorithm for contributions with multiple skills per worker. SoSTA is rational, non-wasteful, fair, and hence stable. SoSTA outperformed other approaches in the simulations of the MeetUp dataset. SoSTA improves execution speed by 80%, task completion rate by 60%, and user happiness by 8%.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"13 3","pages":"947-963"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10925570","citationCount":"0","resultStr":"{\"title\":\"SoSTA: Skill-Oriented Stable Task Assignment With Bidirectional Preferences in Crowdsourcing\",\"authors\":\"Riya Samanta;Soumya K. Ghosh;Sajal K. Das\",\"doi\":\"10.1109/TETC.2025.3548672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional task assignment approaches in crowdsourcing platforms have focused on optimizing utility for workers or tasks, often neglecting the general utility of the platform and the influence of mutual preference considering skill availability and budget restrictions. This oversight can destabilize task allocation outcomes, diminishing user experience, and, ultimately, the platform’s long-term utility and gives rise to the Worker Task Stable Matching (WTSM) problem. To solve WTSM, we propose the Skill-oriented Stable Task Assignment with a Bi-directional Preference (SoSTA) method based on deferred acceptance strategy. SoSTA aims to generate stable allocations between tasks and workers considering mutually their preferences, optimizing overall utility while following skill and budget constraints. Our study redefines the general utility of the platform as an amalgamation of utilities on both the workers’ and tasks’ sides, incorporating the preference lists of each worker or task based on their respective utility scores for the other party. SoSTA incorporates Multi Skill-oriented Stable Worker Task Mapping (Multi-SoS-WTM) algorithm for contributions with multiple skills per worker. SoSTA is rational, non-wasteful, fair, and hence stable. SoSTA outperformed other approaches in the simulations of the MeetUp dataset. SoSTA improves execution speed by 80%, task completion rate by 60%, and user happiness by 8%.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"13 3\",\"pages\":\"947-963\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10925570\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10925570/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10925570/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在众包平台中,传统的任务分配方法侧重于优化工人或任务的效用,往往忽略了平台的一般效用以及考虑技能可用性和预算限制的相互偏好的影响。这种疏忽会破坏任务分配结果的稳定性,降低用户体验,最终影响平台的长期效用,并导致工作任务稳定匹配(Worker task stability Matching, WTSM)问题。为了解决WTSM问题,我们提出了基于延迟接受策略的双向偏好(SoSTA)的技能导向稳定任务分配方法。SoSTA的目标是在任务和工人之间产生稳定的分配,考虑他们的相互偏好,在遵循技能和预算约束的同时优化整体效用。我们的研究将平台的一般效用重新定义为工人和任务双方效用的合并,结合每个工人或任务的偏好列表,基于他们各自对另一方的效用得分。SoSTA结合了面向多技能的稳定工人任务映射(Multi- sos - wtm)算法,用于每个工人的多技能贡献。SoSTA是理性的、不浪费的、公平的,因此是稳定的。在MeetUp数据集的模拟中,SoSTA优于其他方法。SoSTA将执行速度提高了80%,任务完成率提高了60%,用户满意度提高了8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SoSTA: Skill-Oriented Stable Task Assignment With Bidirectional Preferences in Crowdsourcing
Traditional task assignment approaches in crowdsourcing platforms have focused on optimizing utility for workers or tasks, often neglecting the general utility of the platform and the influence of mutual preference considering skill availability and budget restrictions. This oversight can destabilize task allocation outcomes, diminishing user experience, and, ultimately, the platform’s long-term utility and gives rise to the Worker Task Stable Matching (WTSM) problem. To solve WTSM, we propose the Skill-oriented Stable Task Assignment with a Bi-directional Preference (SoSTA) method based on deferred acceptance strategy. SoSTA aims to generate stable allocations between tasks and workers considering mutually their preferences, optimizing overall utility while following skill and budget constraints. Our study redefines the general utility of the platform as an amalgamation of utilities on both the workers’ and tasks’ sides, incorporating the preference lists of each worker or task based on their respective utility scores for the other party. SoSTA incorporates Multi Skill-oriented Stable Worker Task Mapping (Multi-SoS-WTM) algorithm for contributions with multiple skills per worker. SoSTA is rational, non-wasteful, fair, and hence stable. SoSTA outperformed other approaches in the simulations of the MeetUp dataset. SoSTA improves execution speed by 80%, task completion rate by 60%, and user happiness by 8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信