提高对抗鲁棒性的梯度半掩蔽

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xinlei Liu , Tao Hu , Peng Yi , Baolin Li , Jichao Xie , Hailong Ma
{"title":"提高对抗鲁棒性的梯度半掩蔽","authors":"Xinlei Liu ,&nbsp;Tao Hu ,&nbsp;Peng Yi ,&nbsp;Baolin Li ,&nbsp;Jichao Xie ,&nbsp;Hailong Ma","doi":"10.1016/j.patcog.2025.112433","DOIUrl":null,"url":null,"abstract":"<div><div>In gradient masking, certain complex signal processing and probabilistic optimization strategies exhibit favorable characteristics such as nonlinearity, irreversibility, and feature preservation, thereby providing new solutions for adversarial defense. Inspired by this, this paper proposes a plug-and-play <strong>gradient semi-masking module</strong> (<strong>GSeM</strong>) to improve the adversarial robustness of neural networks. GSeM primarily contains a feature straight-through pathway that allows for normal gradient propagation and a feature mapping pathway that interrupts gradient flow. The multi-pathway and semi-masking characteristics cause GSeM to exhibit opposing behaviors when processing data and gradients. Specifically, during data processing, GSeM compresses the state space of features while introducing white noise augmentation. However, during gradient processing, it leads to inefficient updates to certain parameters and ineffective generation of training examples. To address this shortcoming, we correct gradient propagation and introduce gradient-corrected adversarial training. Extensive experiments demonstrate that GSeM differs fundamentally from earlier gradient masking methods: it can genuinely enhance the adversarial defense performance of neural networks, surpassing previous state-of-the-art approaches.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112433"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient semi-masking for improving adversarial robustness\",\"authors\":\"Xinlei Liu ,&nbsp;Tao Hu ,&nbsp;Peng Yi ,&nbsp;Baolin Li ,&nbsp;Jichao Xie ,&nbsp;Hailong Ma\",\"doi\":\"10.1016/j.patcog.2025.112433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In gradient masking, certain complex signal processing and probabilistic optimization strategies exhibit favorable characteristics such as nonlinearity, irreversibility, and feature preservation, thereby providing new solutions for adversarial defense. Inspired by this, this paper proposes a plug-and-play <strong>gradient semi-masking module</strong> (<strong>GSeM</strong>) to improve the adversarial robustness of neural networks. GSeM primarily contains a feature straight-through pathway that allows for normal gradient propagation and a feature mapping pathway that interrupts gradient flow. The multi-pathway and semi-masking characteristics cause GSeM to exhibit opposing behaviors when processing data and gradients. Specifically, during data processing, GSeM compresses the state space of features while introducing white noise augmentation. However, during gradient processing, it leads to inefficient updates to certain parameters and ineffective generation of training examples. To address this shortcoming, we correct gradient propagation and introduce gradient-corrected adversarial training. Extensive experiments demonstrate that GSeM differs fundamentally from earlier gradient masking methods: it can genuinely enhance the adversarial defense performance of neural networks, surpassing previous state-of-the-art approaches.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112433\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325010945\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325010945","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在梯度掩蔽中,某些复杂信号处理和概率优化策略表现出非线性、不可逆性和特征保持性等良好特性,从而为对抗防御提供了新的解决方案。受此启发,本文提出了一种即插即用的梯度半掩蔽模块(GSeM)来提高神经网络的对抗鲁棒性。GSeM主要包含一个允许正常梯度传播的特征直通路径和一个中断梯度流的特征映射路径。多通路和半掩蔽特性导致GSeM在处理数据和梯度时表现出相反的行为。具体来说,在数据处理过程中,GSeM压缩特征的状态空间,同时引入白噪声增强。然而,在梯度处理过程中,某些参数的更新效率低下,训练样例的生成效率低下。为了解决这个缺点,我们纠正了梯度传播并引入了梯度校正对抗训练。大量的实验表明,GSeM与早期的梯度掩蔽方法有根本的不同:它可以真正增强神经网络的对抗防御性能,超越了以前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient semi-masking for improving adversarial robustness
In gradient masking, certain complex signal processing and probabilistic optimization strategies exhibit favorable characteristics such as nonlinearity, irreversibility, and feature preservation, thereby providing new solutions for adversarial defense. Inspired by this, this paper proposes a plug-and-play gradient semi-masking module (GSeM) to improve the adversarial robustness of neural networks. GSeM primarily contains a feature straight-through pathway that allows for normal gradient propagation and a feature mapping pathway that interrupts gradient flow. The multi-pathway and semi-masking characteristics cause GSeM to exhibit opposing behaviors when processing data and gradients. Specifically, during data processing, GSeM compresses the state space of features while introducing white noise augmentation. However, during gradient processing, it leads to inefficient updates to certain parameters and ineffective generation of training examples. To address this shortcoming, we correct gradient propagation and introduce gradient-corrected adversarial training. Extensive experiments demonstrate that GSeM differs fundamentally from earlier gradient masking methods: it can genuinely enhance the adversarial defense performance of neural networks, surpassing previous state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信