{"title":"使用超像素的无监督实例分割","authors":"Cuong Manh Hoang","doi":"10.1016/j.patcog.2025.112402","DOIUrl":null,"url":null,"abstract":"<div><div>Instance segmentation is essential for numerous computer vision applications, including robotics, human-computer interaction, and autonomous driving. Currently, popular models bring impressive performance in instance segmentation by training with a large number of human annotations, which are costly to collect. For this reason, we present a new framework that efficiently and effectively segments objects without the need for human annotations. Firstly, a MultiCut algorithm is applied to self-supervised features for coarse mask segmentation. Then, a mask filter is employed to obtain high-quality coarse masks. To train the segmentation network, we compute a novel superpixel-guided mask loss, comprising hard loss and soft loss, with high-quality coarse masks and superpixels segmented from low-level image features. Lastly, a self-training process with a new adaptive loss is proposed to improve the quality of predicted masks. We conduct experiments on public datasets in instance segmentation and object detection to demonstrate the effectiveness of the proposed framework. The results show that the proposed framework outperforms previous state-of-the-art methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112402"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised instance segmentation with superpixels\",\"authors\":\"Cuong Manh Hoang\",\"doi\":\"10.1016/j.patcog.2025.112402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Instance segmentation is essential for numerous computer vision applications, including robotics, human-computer interaction, and autonomous driving. Currently, popular models bring impressive performance in instance segmentation by training with a large number of human annotations, which are costly to collect. For this reason, we present a new framework that efficiently and effectively segments objects without the need for human annotations. Firstly, a MultiCut algorithm is applied to self-supervised features for coarse mask segmentation. Then, a mask filter is employed to obtain high-quality coarse masks. To train the segmentation network, we compute a novel superpixel-guided mask loss, comprising hard loss and soft loss, with high-quality coarse masks and superpixels segmented from low-level image features. Lastly, a self-training process with a new adaptive loss is proposed to improve the quality of predicted masks. We conduct experiments on public datasets in instance segmentation and object detection to demonstrate the effectiveness of the proposed framework. The results show that the proposed framework outperforms previous state-of-the-art methods.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112402\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325010635\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325010635","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unsupervised instance segmentation with superpixels
Instance segmentation is essential for numerous computer vision applications, including robotics, human-computer interaction, and autonomous driving. Currently, popular models bring impressive performance in instance segmentation by training with a large number of human annotations, which are costly to collect. For this reason, we present a new framework that efficiently and effectively segments objects without the need for human annotations. Firstly, a MultiCut algorithm is applied to self-supervised features for coarse mask segmentation. Then, a mask filter is employed to obtain high-quality coarse masks. To train the segmentation network, we compute a novel superpixel-guided mask loss, comprising hard loss and soft loss, with high-quality coarse masks and superpixels segmented from low-level image features. Lastly, a self-training process with a new adaptive loss is proposed to improve the quality of predicted masks. We conduct experiments on public datasets in instance segmentation and object detection to demonstrate the effectiveness of the proposed framework. The results show that the proposed framework outperforms previous state-of-the-art methods.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.