特征值问题子空间逼近的理论与数值

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Siu Wun Cheung , Youngsoo Choi , Seung Whan Chung , Jean-Luc Fattebert , Coleman Kendrick , Daniel Osei-Kuffuor
{"title":"特征值问题子空间逼近的理论与数值","authors":"Siu Wun Cheung ,&nbsp;Youngsoo Choi ,&nbsp;Seung Whan Chung ,&nbsp;Jean-Luc Fattebert ,&nbsp;Coleman Kendrick ,&nbsp;Daniel Osei-Kuffuor","doi":"10.1016/j.amc.2025.129722","DOIUrl":null,"url":null,"abstract":"<div><div>Large-scale eigenvalue problems arise in various fields of science and engineering and demand computationally efficient solutions. In this study, we investigate the subspace approximation for parametric linear eigenvalue problems, aiming to mitigate the computational burden associated with high-fidelity systems. We provide general error estimates under non-simple eigenvalue conditions, establishing some theoretical foundations for understanding the convergence behavior of subspace approximations. Numerical examples, including problems with one-dimensional to three-dimensional spatial domain and one-dimensional to two-dimensional parameter domain, are presented to demonstrate the efficacy of reduced basis method in handling parametric variations in boundary conditions and coefficient fields to achieve significant computational savings while maintaining high accuracy, making them promising tools for practical applications in large-scale eigenvalue computations.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"511 ","pages":"Article 129722"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory and numerics of subspace approximation of eigenvalue problems\",\"authors\":\"Siu Wun Cheung ,&nbsp;Youngsoo Choi ,&nbsp;Seung Whan Chung ,&nbsp;Jean-Luc Fattebert ,&nbsp;Coleman Kendrick ,&nbsp;Daniel Osei-Kuffuor\",\"doi\":\"10.1016/j.amc.2025.129722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large-scale eigenvalue problems arise in various fields of science and engineering and demand computationally efficient solutions. In this study, we investigate the subspace approximation for parametric linear eigenvalue problems, aiming to mitigate the computational burden associated with high-fidelity systems. We provide general error estimates under non-simple eigenvalue conditions, establishing some theoretical foundations for understanding the convergence behavior of subspace approximations. Numerical examples, including problems with one-dimensional to three-dimensional spatial domain and one-dimensional to two-dimensional parameter domain, are presented to demonstrate the efficacy of reduced basis method in handling parametric variations in boundary conditions and coefficient fields to achieve significant computational savings while maintaining high accuracy, making them promising tools for practical applications in large-scale eigenvalue computations.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"511 \",\"pages\":\"Article 129722\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325004448\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004448","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

大规模特征值问题出现在科学和工程的各个领域,需要计算效率高的解决方案。在本研究中,我们研究了参数线性特征值问题的子空间逼近,旨在减轻与高保真系统相关的计算负担。给出了非简单特征值条件下的一般误差估计,为理解子空间逼近的收敛性奠定了理论基础。数值例子,包括一维到三维空间域和一维到二维参数域的问题,展示了减少基方法在处理边界条件和系数场的参数变化方面的有效性,在保持高精度的同时实现了显著的计算节省,使它们成为大规模特征值计算的实际应用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theory and numerics of subspace approximation of eigenvalue problems
Large-scale eigenvalue problems arise in various fields of science and engineering and demand computationally efficient solutions. In this study, we investigate the subspace approximation for parametric linear eigenvalue problems, aiming to mitigate the computational burden associated with high-fidelity systems. We provide general error estimates under non-simple eigenvalue conditions, establishing some theoretical foundations for understanding the convergence behavior of subspace approximations. Numerical examples, including problems with one-dimensional to three-dimensional spatial domain and one-dimensional to two-dimensional parameter domain, are presented to demonstrate the efficacy of reduced basis method in handling parametric variations in boundary conditions and coefficient fields to achieve significant computational savings while maintaining high accuracy, making them promising tools for practical applications in large-scale eigenvalue computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信