{"title":"具有8价电子数的I-III-IV类半Heusler化合物的电子结构和热电性质的阐明","authors":"Prakash Khatri , Saran Lamichhane , Narayan Prasad Adhikari","doi":"10.1016/j.jpcs.2025.113132","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the stability, electronic structure, electron and phonon transport properties of I–III–IV class half Heusler compounds RbXZ (X = Sc, Y; Z = Si, Ge, Pb) with an octet valence electron count using first-principles calculations and semiclassical Boltzmann transport theory. We predicted the lowest-energy structure and then checked phonon stability. Only RbYPb shows dynamical stability, while the rest five compounds are dynamically unstable. AIMD simulations indicate that RbYPb exhibits thermal stability at 800 K. The predicted stable compound has a direct narrow band gap of 0.11 eV at point X of Brillouin zone, using GGA with spin orbit coupling. The elastic constants and mechanical parameters confirm that RbYPb is mechanically stable, ductile, anisotropic, and has low rigidity. The compound shows a very low value of lattice thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>) even at 300 K. The thermoelectric parameters of RbYPb, including the Seebeck coefficient (<span><math><mi>S</mi></math></span>), electrical conductivity (<span><math><mi>σ</mi></math></span>), electronic thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>e</mi><mi>l</mi></mrow></msub></math></span>), and power factor (<span><math><mrow><mi>P</mi><mi>F</mi></mrow></math></span>) under CRTA, are calculated, and discussed in detail. The maximum <span><math><mrow><mi>P</mi><mi>F</mi></mrow></math></span> of 110.47 <span><math><mi>μ</mi></math></span>Wcm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>K<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> is achieved at 800 K with the doping concentration of 2.93 × 10<span><math><msup><mrow></mrow><mrow><mn>21</mn></mrow></msup></math></span>cm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> for n-type carriers. The n-type RbYPb shows a higher zT <span><math><mo>></mo></math></span> 1 compared to the p-type carriers across all considered temperatures.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113132"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of electronic structure and thermoelectric properties of I–III–IV class half Heusler compounds with eight valence electron count\",\"authors\":\"Prakash Khatri , Saran Lamichhane , Narayan Prasad Adhikari\",\"doi\":\"10.1016/j.jpcs.2025.113132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the stability, electronic structure, electron and phonon transport properties of I–III–IV class half Heusler compounds RbXZ (X = Sc, Y; Z = Si, Ge, Pb) with an octet valence electron count using first-principles calculations and semiclassical Boltzmann transport theory. We predicted the lowest-energy structure and then checked phonon stability. Only RbYPb shows dynamical stability, while the rest five compounds are dynamically unstable. AIMD simulations indicate that RbYPb exhibits thermal stability at 800 K. The predicted stable compound has a direct narrow band gap of 0.11 eV at point X of Brillouin zone, using GGA with spin orbit coupling. The elastic constants and mechanical parameters confirm that RbYPb is mechanically stable, ductile, anisotropic, and has low rigidity. The compound shows a very low value of lattice thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>) even at 300 K. The thermoelectric parameters of RbYPb, including the Seebeck coefficient (<span><math><mi>S</mi></math></span>), electrical conductivity (<span><math><mi>σ</mi></math></span>), electronic thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>e</mi><mi>l</mi></mrow></msub></math></span>), and power factor (<span><math><mrow><mi>P</mi><mi>F</mi></mrow></math></span>) under CRTA, are calculated, and discussed in detail. The maximum <span><math><mrow><mi>P</mi><mi>F</mi></mrow></math></span> of 110.47 <span><math><mi>μ</mi></math></span>Wcm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>K<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> is achieved at 800 K with the doping concentration of 2.93 × 10<span><math><msup><mrow></mrow><mrow><mn>21</mn></mrow></msup></math></span>cm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> for n-type carriers. The n-type RbYPb shows a higher zT <span><math><mo>></mo></math></span> 1 compared to the p-type carriers across all considered temperatures.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113132\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725005840\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725005840","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Elucidation of electronic structure and thermoelectric properties of I–III–IV class half Heusler compounds with eight valence electron count
This paper presents the stability, electronic structure, electron and phonon transport properties of I–III–IV class half Heusler compounds RbXZ (X = Sc, Y; Z = Si, Ge, Pb) with an octet valence electron count using first-principles calculations and semiclassical Boltzmann transport theory. We predicted the lowest-energy structure and then checked phonon stability. Only RbYPb shows dynamical stability, while the rest five compounds are dynamically unstable. AIMD simulations indicate that RbYPb exhibits thermal stability at 800 K. The predicted stable compound has a direct narrow band gap of 0.11 eV at point X of Brillouin zone, using GGA with spin orbit coupling. The elastic constants and mechanical parameters confirm that RbYPb is mechanically stable, ductile, anisotropic, and has low rigidity. The compound shows a very low value of lattice thermal conductivity () even at 300 K. The thermoelectric parameters of RbYPb, including the Seebeck coefficient (), electrical conductivity (), electronic thermal conductivity (), and power factor () under CRTA, are calculated, and discussed in detail. The maximum of 110.47 WcmK is achieved at 800 K with the doping concentration of 2.93 × 10cm for n-type carriers. The n-type RbYPb shows a higher zT 1 compared to the p-type carriers across all considered temperatures.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.