超薄钝化层(1nm)的带隙梯度策略使钙钛矿/CdTe串联太阳能电池的SRH电压损失更低

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sumaiya Parveen , Prem P. Singh , Madan S. Chauhan , Shiv P. Patel , Manish K. Singh , Dhirendra K. Chaudhary , Ravi S. Singh , Vidya N. Singh , Vineet K. Singh
{"title":"超薄钝化层(1nm)的带隙梯度策略使钙钛矿/CdTe串联太阳能电池的SRH电压损失更低","authors":"Sumaiya Parveen ,&nbsp;Prem P. Singh ,&nbsp;Madan S. Chauhan ,&nbsp;Shiv P. Patel ,&nbsp;Manish K. Singh ,&nbsp;Dhirendra K. Chaudhary ,&nbsp;Ravi S. Singh ,&nbsp;Vidya N. Singh ,&nbsp;Vineet K. Singh","doi":"10.1016/j.jpcs.2025.113187","DOIUrl":null,"url":null,"abstract":"<div><div>An experimentally demonstrated open-circuit voltage of a CdTe-based solar cell is only 904.8 mV, which is ∼235.2 mV lower than the Shockley–Queisser voltage limit. This voltage loss can be attributed to the factors such as radiative, nonradiative, and thermodynamic recombination losses. To circumvent the voltage loss issue, this study proposes a strategy of implementation a CdSe<sub>0.2</sub>Te<sub>0.8</sub> passivation layer in conjunction with graded bandgap absorber layers. Initially, we examined a device with a configuration of V<sub>2</sub>O<sub>5</sub>/CdTe/ZnSe in absence of passivation layer. This device resulted in a larger Shockley-Read-Hall (SRH) recombination voltage loss of 281 mV and a total voltage loss of 716 mV. We modified this device configuration by utilizing an ultrathin layer (1 nm) of CdSe<sub>0.2</sub>Te<sub>0.8</sub>, i.e., V<sub>2</sub>O<sub>5</sub>/CdTe/CdSe<sub>0.2</sub>Te<sub>0.8</sub>/ZnSe. An ultrathin layer of CdSe<sub>0.2</sub>Te<sub>0.8</sub> works as an effective passivation layer, substantially reducing the SRH recombination voltage loss to 46 mV from 281 mV. Interestingly, when a thicker layer of CdSe<sub>0.2</sub>Te<sub>0.8</sub> is utilized, it not only acts as a passivation layer but also functions as an absorber layer, creating a bandgap gradient. However, improving the grain boundary between CdSe<sub>0.2</sub>Te<sub>0.8</sub> and ZnSe is necessary to further cuts down to SRH recombination voltage loss below 46 mV. To overcome this issue, a thin window layer of CdS<sub>0.102</sub>Se<sub>0.336</sub>Te<sub>0.562</sub> has been incorporated in between CdSe<sub>0.2</sub>Te<sub>0.8</sub> and ZnSe, close to the front contact, which reduces the SRH recombination voltage loss to 20 mV. This SRH recombination voltage loss can be further minimized to zero from 20 mV when the back interface has been optimized. All simulation data have been justified by previous reported experimental finding to validate the proposed simulation models. Additionally, two-terminal and four-terminal perovskite/CdTe tandem configurations have also been proposed and simulated, yielding power conversion efficiency of 28.64 % and 29.80 %, respectively. These findings demonstrate the efficacy of passivation layer, double absorber layer, bandgap grading, window layer, and interface engineering in mitigating SRH recombination voltage loss, offering a roadmap for future perovskite/CdTe tandem solar cells.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113187"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bandgap gradient strategy with ultra-thin passivation layer (1 nm) enabling lower SRH voltage loss in perovskite/CdTe Tandem Solar Cells\",\"authors\":\"Sumaiya Parveen ,&nbsp;Prem P. Singh ,&nbsp;Madan S. Chauhan ,&nbsp;Shiv P. Patel ,&nbsp;Manish K. Singh ,&nbsp;Dhirendra K. Chaudhary ,&nbsp;Ravi S. Singh ,&nbsp;Vidya N. Singh ,&nbsp;Vineet K. Singh\",\"doi\":\"10.1016/j.jpcs.2025.113187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An experimentally demonstrated open-circuit voltage of a CdTe-based solar cell is only 904.8 mV, which is ∼235.2 mV lower than the Shockley–Queisser voltage limit. This voltage loss can be attributed to the factors such as radiative, nonradiative, and thermodynamic recombination losses. To circumvent the voltage loss issue, this study proposes a strategy of implementation a CdSe<sub>0.2</sub>Te<sub>0.8</sub> passivation layer in conjunction with graded bandgap absorber layers. Initially, we examined a device with a configuration of V<sub>2</sub>O<sub>5</sub>/CdTe/ZnSe in absence of passivation layer. This device resulted in a larger Shockley-Read-Hall (SRH) recombination voltage loss of 281 mV and a total voltage loss of 716 mV. We modified this device configuration by utilizing an ultrathin layer (1 nm) of CdSe<sub>0.2</sub>Te<sub>0.8</sub>, i.e., V<sub>2</sub>O<sub>5</sub>/CdTe/CdSe<sub>0.2</sub>Te<sub>0.8</sub>/ZnSe. An ultrathin layer of CdSe<sub>0.2</sub>Te<sub>0.8</sub> works as an effective passivation layer, substantially reducing the SRH recombination voltage loss to 46 mV from 281 mV. Interestingly, when a thicker layer of CdSe<sub>0.2</sub>Te<sub>0.8</sub> is utilized, it not only acts as a passivation layer but also functions as an absorber layer, creating a bandgap gradient. However, improving the grain boundary between CdSe<sub>0.2</sub>Te<sub>0.8</sub> and ZnSe is necessary to further cuts down to SRH recombination voltage loss below 46 mV. To overcome this issue, a thin window layer of CdS<sub>0.102</sub>Se<sub>0.336</sub>Te<sub>0.562</sub> has been incorporated in between CdSe<sub>0.2</sub>Te<sub>0.8</sub> and ZnSe, close to the front contact, which reduces the SRH recombination voltage loss to 20 mV. This SRH recombination voltage loss can be further minimized to zero from 20 mV when the back interface has been optimized. All simulation data have been justified by previous reported experimental finding to validate the proposed simulation models. Additionally, two-terminal and four-terminal perovskite/CdTe tandem configurations have also been proposed and simulated, yielding power conversion efficiency of 28.64 % and 29.80 %, respectively. These findings demonstrate the efficacy of passivation layer, double absorber layer, bandgap grading, window layer, and interface engineering in mitigating SRH recombination voltage loss, offering a roadmap for future perovskite/CdTe tandem solar cells.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113187\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725006407\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725006407","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实验证明,基于cdte的太阳能电池的开路电压仅为904.8 mV,比Shockley-Queisser电压极限低~ 235.2 mV。这种电压损失可归因于辐射、非辐射和热力学复合损失等因素。为了避免电压损耗问题,本研究提出了一种将CdSe0.2Te0.8钝化层与梯度带隙吸收层结合使用的策略。首先,我们研究了一个没有钝化层的V2O5/CdTe/ZnSe结构的器件。该器件产生了较大的Shockley-Read-Hall (SRH)复合电压损失281 mV,总电压损失716 mV。我们利用CdSe0.2Te0.8的超薄层(1nm),即V2O5/CdTe/CdSe0.2Te0.8/ZnSe,修改了该器件的配置。超薄层CdSe0.2Te0.8作为有效的钝化层,可将SRH复合电压损失从281 mV大幅降低至46 mV。有趣的是,当使用较厚的CdSe0.2Te0.8层时,它不仅可以作为钝化层,还可以作为吸收层,产生带隙梯度。然而,改善CdSe0.2Te0.8和ZnSe之间的晶界是进一步将SRH复合电压损失降低到46 mV以下的必要条件。为了克服这个问题,在CdSe0.2Te0.8和ZnSe之间加入了一层CdS0.102Se0.336Te0.562的薄窗口层,靠近前触点,将SRH复合电压损失降低到20 mV。当对后端接口进行优化后,SRH复合电压损失可进一步从20 mV降至零。所有的模拟数据都被先前报道的实验结果所证实,以验证所提出的模拟模型。此外,还提出并模拟了两端和四端钙钛矿/CdTe串联结构,其功率转换效率分别为28.64%和29.80%。这些发现证明了钝化层、双吸收层、带隙分级、窗口层和界面工程在减轻SRH复合电压损失方面的有效性,为未来钙钛矿/CdTe串联太阳能电池提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bandgap gradient strategy with ultra-thin passivation layer (1 nm) enabling lower SRH voltage loss in perovskite/CdTe Tandem Solar Cells

Bandgap gradient strategy with ultra-thin passivation layer (1 nm) enabling lower SRH voltage loss in perovskite/CdTe Tandem Solar Cells
An experimentally demonstrated open-circuit voltage of a CdTe-based solar cell is only 904.8 mV, which is ∼235.2 mV lower than the Shockley–Queisser voltage limit. This voltage loss can be attributed to the factors such as radiative, nonradiative, and thermodynamic recombination losses. To circumvent the voltage loss issue, this study proposes a strategy of implementation a CdSe0.2Te0.8 passivation layer in conjunction with graded bandgap absorber layers. Initially, we examined a device with a configuration of V2O5/CdTe/ZnSe in absence of passivation layer. This device resulted in a larger Shockley-Read-Hall (SRH) recombination voltage loss of 281 mV and a total voltage loss of 716 mV. We modified this device configuration by utilizing an ultrathin layer (1 nm) of CdSe0.2Te0.8, i.e., V2O5/CdTe/CdSe0.2Te0.8/ZnSe. An ultrathin layer of CdSe0.2Te0.8 works as an effective passivation layer, substantially reducing the SRH recombination voltage loss to 46 mV from 281 mV. Interestingly, when a thicker layer of CdSe0.2Te0.8 is utilized, it not only acts as a passivation layer but also functions as an absorber layer, creating a bandgap gradient. However, improving the grain boundary between CdSe0.2Te0.8 and ZnSe is necessary to further cuts down to SRH recombination voltage loss below 46 mV. To overcome this issue, a thin window layer of CdS0.102Se0.336Te0.562 has been incorporated in between CdSe0.2Te0.8 and ZnSe, close to the front contact, which reduces the SRH recombination voltage loss to 20 mV. This SRH recombination voltage loss can be further minimized to zero from 20 mV when the back interface has been optimized. All simulation data have been justified by previous reported experimental finding to validate the proposed simulation models. Additionally, two-terminal and four-terminal perovskite/CdTe tandem configurations have also been proposed and simulated, yielding power conversion efficiency of 28.64 % and 29.80 %, respectively. These findings demonstrate the efficacy of passivation layer, double absorber layer, bandgap grading, window layer, and interface engineering in mitigating SRH recombination voltage loss, offering a roadmap for future perovskite/CdTe tandem solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信