pvp功能化氧化石墨烯在可见光下调节SnS2-g-C3N4异质结罗丹明B降解的机制阐明

IF 4.9 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Fowzia S. Alamro , Ashraf A. Mohamed , Safwat A. Mahmoud , Hoda A. Ahmed , Arafat Toghan , Mohamed Farg , Mohamed A. Ahmed , Mahmoud A. Ahmed
{"title":"pvp功能化氧化石墨烯在可见光下调节SnS2-g-C3N4异质结罗丹明B降解的机制阐明","authors":"Fowzia S. Alamro ,&nbsp;Ashraf A. Mohamed ,&nbsp;Safwat A. Mahmoud ,&nbsp;Hoda A. Ahmed ,&nbsp;Arafat Toghan ,&nbsp;Mohamed Farg ,&nbsp;Mohamed A. Ahmed ,&nbsp;Mahmoud A. Ahmed","doi":"10.1016/j.jpcs.2025.113180","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a groundbreaking PGOGSn10 nanocomposite, fabricated through the strategic incorporation of PVP-functionalized GO into a SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterostructure, to significantly amplify its photocatalytic role for Rhodamine B (RhB) mineralization. While SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (GSn10) systems are limited by relatively quick charge recombination and insufficient surface-active sites, the PVP-GO matrix (PGO) serves as a multifunctional mediator, boosting interfacial electron migration via π-π conjugation, preventing agglomeration, suppressing carrier recombination, and providing a suitable surface-area scaffold for dye adsorption and ROS generation. Advanced characterization analysis, including XRD, XPS, and HRTEM, validated the successful hybridization of PGO with GSn10 (PGOGSn10), revealing a 2D/3D hierarchical architecture with lattice-resolved SnS<sub>2</sub> (111) planes anchored onto ultrathin g-C<sub>3</sub>N<sub>4</sub> nanosheets. FTIR confirmed chemical bonding between PVP's carbonyl groups and GO's oxygen functionalities, while XPS deconvolution spectra highlighted interfacial C–N–Sn bridging bonds critical for charge delocalization. Optical studies (DRS, PL) reflected a narrowed bandgap (2.4 eV) and 75 % reduction in PL intensity for PGOGSn10 versus SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, corroborated by EIS showing a 2.5-fold decrease in charge-transfer resistance. The optimized PGOGSn10 achieved 97.6 % RhB mineralization within 90 min (rate constant k = 0.029 min<sup>−1</sup>), outperforming SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite (k = 0.016 min<sup>−1</sup>) and pristine g-C<sub>3</sub>N<sub>4</sub> (k = 0.0034 min<sup>−1</sup>). Radical trapping experiments and terephthalic acid (TA) fluorescence assays quantified •OH and •O<sub>2</sub><sup>−</sup> as the dominant ROS. Operational optimizations identified pH 7 as ideal (zeta potential = −32 mV for electrostatic RhB adsorption) and 0.1 g/L dose (Langmuir-Hinshelwood kinetics). Remarkably, PGOGSn10 retained 85 % efficacy after 5 reuse times.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"208 ","pages":"Article 113180"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic elucidation of PVP-functionalized GO in modulating SnS2-g-C3N4 heterojunctions for rhodamine B degradation under visible light\",\"authors\":\"Fowzia S. Alamro ,&nbsp;Ashraf A. Mohamed ,&nbsp;Safwat A. Mahmoud ,&nbsp;Hoda A. Ahmed ,&nbsp;Arafat Toghan ,&nbsp;Mohamed Farg ,&nbsp;Mohamed A. Ahmed ,&nbsp;Mahmoud A. Ahmed\",\"doi\":\"10.1016/j.jpcs.2025.113180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a groundbreaking PGOGSn10 nanocomposite, fabricated through the strategic incorporation of PVP-functionalized GO into a SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterostructure, to significantly amplify its photocatalytic role for Rhodamine B (RhB) mineralization. While SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (GSn10) systems are limited by relatively quick charge recombination and insufficient surface-active sites, the PVP-GO matrix (PGO) serves as a multifunctional mediator, boosting interfacial electron migration via π-π conjugation, preventing agglomeration, suppressing carrier recombination, and providing a suitable surface-area scaffold for dye adsorption and ROS generation. Advanced characterization analysis, including XRD, XPS, and HRTEM, validated the successful hybridization of PGO with GSn10 (PGOGSn10), revealing a 2D/3D hierarchical architecture with lattice-resolved SnS<sub>2</sub> (111) planes anchored onto ultrathin g-C<sub>3</sub>N<sub>4</sub> nanosheets. FTIR confirmed chemical bonding between PVP's carbonyl groups and GO's oxygen functionalities, while XPS deconvolution spectra highlighted interfacial C–N–Sn bridging bonds critical for charge delocalization. Optical studies (DRS, PL) reflected a narrowed bandgap (2.4 eV) and 75 % reduction in PL intensity for PGOGSn10 versus SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, corroborated by EIS showing a 2.5-fold decrease in charge-transfer resistance. The optimized PGOGSn10 achieved 97.6 % RhB mineralization within 90 min (rate constant k = 0.029 min<sup>−1</sup>), outperforming SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite (k = 0.016 min<sup>−1</sup>) and pristine g-C<sub>3</sub>N<sub>4</sub> (k = 0.0034 min<sup>−1</sup>). Radical trapping experiments and terephthalic acid (TA) fluorescence assays quantified •OH and •O<sub>2</sub><sup>−</sup> as the dominant ROS. Operational optimizations identified pH 7 as ideal (zeta potential = −32 mV for electrostatic RhB adsorption) and 0.1 g/L dose (Langmuir-Hinshelwood kinetics). Remarkably, PGOGSn10 retained 85 % efficacy after 5 reuse times.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"208 \",\"pages\":\"Article 113180\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002236972500633X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972500633X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种开创性的PGOGSn10纳米复合材料,通过将pvp功能化的氧化石墨烯策略性地整合到SnS2/g-C3N4异质结构中,显著增强了其对罗丹明B (RhB)矿化的光催化作用。虽然SnS2/g-C3N4 (GSn10)体系受到电荷重组速度相对较快和表面活性位点不足的限制,但PVP-GO基质(PGO)作为多功能介质,通过π-π共轭促进界面电子迁移,防止团聚,抑制载子重组,并为染料吸附和ROS生成提供合适的表面积支架。先进的表征分析,包括XRD, XPS和HRTEM,验证了PGO与GSn10 (PGOGSn10)的成功杂交,揭示了晶格分辨率SnS2(111)平面锚定在超薄g-C3N4纳米片上的2D/3D分层结构。FTIR证实了PVP羰基与氧化石墨烯氧官能团之间的化学键,而XPS反褶积光谱则强调了对电荷离域至关重要的界面C-N-Sn桥接键。光学研究(DRS, PL)表明,与SnS2/g-C3N4相比,PGOGSn10的带隙缩小(2.4 eV), PL强度降低了75%,EIS证实了PGOGSn10的电荷转移电阻降低了2.5倍。优化后的PGOGSn10在90 min内矿化率达到97.6%(速率常数k = 0.029 min−1),优于SnS2/g-C3N4复合材料(k = 0.016 min−1)和原始g-C3N4 (k = 0.0034 min−1)。自由基捕获实验和对苯二甲酸(TA)荧光测定定量•OH和•O2−为显性ROS。操作优化确定pH为7(静电吸附RhB的zeta电位= - 32 mV)和0.1 g/L剂量(Langmuir-Hinshelwood动力学)。值得注意的是,PGOGSn10在重复使用5次后仍保持85%的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic elucidation of PVP-functionalized GO in modulating SnS2-g-C3N4 heterojunctions for rhodamine B degradation under visible light
This study presents a groundbreaking PGOGSn10 nanocomposite, fabricated through the strategic incorporation of PVP-functionalized GO into a SnS2/g-C3N4 heterostructure, to significantly amplify its photocatalytic role for Rhodamine B (RhB) mineralization. While SnS2/g-C3N4 (GSn10) systems are limited by relatively quick charge recombination and insufficient surface-active sites, the PVP-GO matrix (PGO) serves as a multifunctional mediator, boosting interfacial electron migration via π-π conjugation, preventing agglomeration, suppressing carrier recombination, and providing a suitable surface-area scaffold for dye adsorption and ROS generation. Advanced characterization analysis, including XRD, XPS, and HRTEM, validated the successful hybridization of PGO with GSn10 (PGOGSn10), revealing a 2D/3D hierarchical architecture with lattice-resolved SnS2 (111) planes anchored onto ultrathin g-C3N4 nanosheets. FTIR confirmed chemical bonding between PVP's carbonyl groups and GO's oxygen functionalities, while XPS deconvolution spectra highlighted interfacial C–N–Sn bridging bonds critical for charge delocalization. Optical studies (DRS, PL) reflected a narrowed bandgap (2.4 eV) and 75 % reduction in PL intensity for PGOGSn10 versus SnS2/g-C3N4, corroborated by EIS showing a 2.5-fold decrease in charge-transfer resistance. The optimized PGOGSn10 achieved 97.6 % RhB mineralization within 90 min (rate constant k = 0.029 min−1), outperforming SnS2/g-C3N4 composite (k = 0.016 min−1) and pristine g-C3N4 (k = 0.0034 min−1). Radical trapping experiments and terephthalic acid (TA) fluorescence assays quantified •OH and •O2 as the dominant ROS. Operational optimizations identified pH 7 as ideal (zeta potential = −32 mV for electrostatic RhB adsorption) and 0.1 g/L dose (Langmuir-Hinshelwood kinetics). Remarkably, PGOGSn10 retained 85 % efficacy after 5 reuse times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信