在多功能Ni@C/WOx上协同催化纤维素高效氢解制乙二醇

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingqiang Chen, Zhiwei Yang, Haosheng Xin*, Yishuang Wang, Defang Liang and Chang Li, 
{"title":"在多功能Ni@C/WOx上协同催化纤维素高效氢解制乙二醇","authors":"Mingqiang Chen,&nbsp;Zhiwei Yang,&nbsp;Haosheng Xin*,&nbsp;Yishuang Wang,&nbsp;Defang Liang and Chang Li,&nbsp;","doi":"10.1021/acssuschemeng.5c06871","DOIUrl":null,"url":null,"abstract":"<p >As a major constituent of renewable biomass, conversion of cellulose to high-value chemicals presents a promising strategy. Herein, we designed a multifunctional Ni@C/WO<sub><i>x</i></sub> catalyst for direct cellulose conversion to ethylene glycol. This catalyst exhibited excellent stability while achieving a high ethylene glycol yield (69.4%). Graphene-encapsulated metal Ni stabilized hydrogenation activity and minimized metal leaching. The interaction between Ni@C and WO<sub><i>x</i></sub> facilitated the reduction of WO<sub><i>x</i></sub> and increased the formation of W<sup>5+</sup> species. Characterization by electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), NH<sub>3</sub>-TPD, and Py-IR confirmed that W<sup>5+</sup> formation induces oxygen vacancies and acid sites on the catalyst support surface. At 30% Ni loading, strong metal–support interactions maximized the W<sup>5+</sup> concentration and oxygen vacancy, enhancing the C–C bond cleavage efficiency. Consequently, the synergistic effect between Ni@C and WO<sub><i>x</i></sub> effectively facilitates key steps in cellulose conversion to ethylene glycol: cellulose hydrolysis, glucose retro-aldol condensation, and glycolaldehyde hydrogenation. The understanding of these structure–performance relationships has provided new ideas for the green and sustainable production of high-value-added chemicals from cellulose.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 36","pages":"15201–15213"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Catalysis for Efficient Hydrogenolysis of Cellulose to Ethylene Glycol over Multifunctional Ni@C/WOx\",\"authors\":\"Mingqiang Chen,&nbsp;Zhiwei Yang,&nbsp;Haosheng Xin*,&nbsp;Yishuang Wang,&nbsp;Defang Liang and Chang Li,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c06871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As a major constituent of renewable biomass, conversion of cellulose to high-value chemicals presents a promising strategy. Herein, we designed a multifunctional Ni@C/WO<sub><i>x</i></sub> catalyst for direct cellulose conversion to ethylene glycol. This catalyst exhibited excellent stability while achieving a high ethylene glycol yield (69.4%). Graphene-encapsulated metal Ni stabilized hydrogenation activity and minimized metal leaching. The interaction between Ni@C and WO<sub><i>x</i></sub> facilitated the reduction of WO<sub><i>x</i></sub> and increased the formation of W<sup>5+</sup> species. Characterization by electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), NH<sub>3</sub>-TPD, and Py-IR confirmed that W<sup>5+</sup> formation induces oxygen vacancies and acid sites on the catalyst support surface. At 30% Ni loading, strong metal–support interactions maximized the W<sup>5+</sup> concentration and oxygen vacancy, enhancing the C–C bond cleavage efficiency. Consequently, the synergistic effect between Ni@C and WO<sub><i>x</i></sub> effectively facilitates key steps in cellulose conversion to ethylene glycol: cellulose hydrolysis, glucose retro-aldol condensation, and glycolaldehyde hydrogenation. The understanding of these structure–performance relationships has provided new ideas for the green and sustainable production of high-value-added chemicals from cellulose.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 36\",\"pages\":\"15201–15213\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c06871\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c06871","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为可再生生物质的主要成分,纤维素转化为高价值化学品是一种很有前途的策略。在此,我们设计了一种多功能的Ni@C/WOx催化剂,用于纤维素直接转化为乙二醇。该催化剂稳定性好,乙二醇收率高(69.4%)。石墨烯包覆金属镍稳定氢化活性,减少金属浸出。Ni@C与WOx的相互作用促进了WOx的还原,增加了W5+的形成。通过电子顺磁共振(EPR)、x射线光电子能谱(XPS)、NH3-TPD和Py-IR表征证实,W5+的形成在催化剂载体表面诱导了氧空位和酸位。在30% Ni负载下,强金属-载体相互作用使W5+浓度和氧空位最大化,提高了C-C键的解理效率。因此,Ni@C和WOx之间的协同作用有效地促进了纤维素转化为乙二醇的关键步骤:纤维素水解、葡萄糖反醛缩合和乙醇醛加氢。对这些结构-性能关系的认识为纤维素绿色可持续生产高附加值化学品提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Catalysis for Efficient Hydrogenolysis of Cellulose to Ethylene Glycol over Multifunctional Ni@C/WOx

Synergistic Catalysis for Efficient Hydrogenolysis of Cellulose to Ethylene Glycol over Multifunctional Ni@C/WOx

As a major constituent of renewable biomass, conversion of cellulose to high-value chemicals presents a promising strategy. Herein, we designed a multifunctional Ni@C/WOx catalyst for direct cellulose conversion to ethylene glycol. This catalyst exhibited excellent stability while achieving a high ethylene glycol yield (69.4%). Graphene-encapsulated metal Ni stabilized hydrogenation activity and minimized metal leaching. The interaction between Ni@C and WOx facilitated the reduction of WOx and increased the formation of W5+ species. Characterization by electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), NH3-TPD, and Py-IR confirmed that W5+ formation induces oxygen vacancies and acid sites on the catalyst support surface. At 30% Ni loading, strong metal–support interactions maximized the W5+ concentration and oxygen vacancy, enhancing the C–C bond cleavage efficiency. Consequently, the synergistic effect between Ni@C and WOx effectively facilitates key steps in cellulose conversion to ethylene glycol: cellulose hydrolysis, glucose retro-aldol condensation, and glycolaldehyde hydrogenation. The understanding of these structure–performance relationships has provided new ideas for the green and sustainable production of high-value-added chemicals from cellulose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信