裁剪富氧空位的NiFe-LDH实现海水高效选择性氧化

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao Tang, Lili Guo, Bingxu Wang, Jingqi Chi, Junfeng Qin, Qiang Cao, Zhenyu Xiao, Zexing Wu, Xiaobin Liu* and Lei Wang*, 
{"title":"裁剪富氧空位的NiFe-LDH实现海水高效选择性氧化","authors":"Xiao Tang,&nbsp;Lili Guo,&nbsp;Bingxu Wang,&nbsp;Jingqi Chi,&nbsp;Junfeng Qin,&nbsp;Qiang Cao,&nbsp;Zhenyu Xiao,&nbsp;Zexing Wu,&nbsp;Xiaobin Liu* and Lei Wang*,&nbsp;","doi":"10.1021/acssuschemeng.5c05425","DOIUrl":null,"url":null,"abstract":"<p >In the context of seawater electrolysis, the inevitable adsorption of chloride ions (Cl<sup>–</sup>) at the anode surface induces a concurrent competitive oxidation reaction (ClOR), which subsequently decreases the prolonged operational stability of the electrolytic system. Here, nickel iron hydroxide supported on nickel foam with rich oxygen vacancies (Ov-NiFe(OH)<sub><i>X</i></sub>) has been synthesized by a fast and simple electrodeposition combined with the impregnation method. Ov can synergistically modulate the electronic structure of NiFe-based hydroxides to realize the electronic redistribution and induce rapid phase reconstruction, and the activated Ni phase with a higher valence acts as a Lewis acid center, which can endow Ov-NiFe(OH)<sub><i>X</i></sub> with high OH<sup>–</sup> selectivity and Cl<sup>–</sup> repulsion in seawater, thus realizing the selective and efficient oxidation of seawater. The Ov-NiFe(OH)<sub><i>X</i></sub> anode-equipped seawater AEM electrolyzer exhibits an exceptional performance, characterized by remarkable activity (1.78 V at 500 mA cm<sup>–2</sup>) and sustained operational durability (120 h of continuous operation at 500 mA cm<sup>–2</sup>). Notably, the AEM achieves an operational efficiency of 74.0% under 200 mA cm<sup>–2</sup> when tested in a 1.0 M KOH/seawater electrolyte mixture, corresponding to a cost-effective hydrogen production cost of $0.9 per GGE.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 36","pages":"15027–15037"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Oxygen Vacancy-Rich NiFe-LDH to Realize Seawater Oxidation with a High Efficiency and Selectivity\",\"authors\":\"Xiao Tang,&nbsp;Lili Guo,&nbsp;Bingxu Wang,&nbsp;Jingqi Chi,&nbsp;Junfeng Qin,&nbsp;Qiang Cao,&nbsp;Zhenyu Xiao,&nbsp;Zexing Wu,&nbsp;Xiaobin Liu* and Lei Wang*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c05425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the context of seawater electrolysis, the inevitable adsorption of chloride ions (Cl<sup>–</sup>) at the anode surface induces a concurrent competitive oxidation reaction (ClOR), which subsequently decreases the prolonged operational stability of the electrolytic system. Here, nickel iron hydroxide supported on nickel foam with rich oxygen vacancies (Ov-NiFe(OH)<sub><i>X</i></sub>) has been synthesized by a fast and simple electrodeposition combined with the impregnation method. Ov can synergistically modulate the electronic structure of NiFe-based hydroxides to realize the electronic redistribution and induce rapid phase reconstruction, and the activated Ni phase with a higher valence acts as a Lewis acid center, which can endow Ov-NiFe(OH)<sub><i>X</i></sub> with high OH<sup>–</sup> selectivity and Cl<sup>–</sup> repulsion in seawater, thus realizing the selective and efficient oxidation of seawater. The Ov-NiFe(OH)<sub><i>X</i></sub> anode-equipped seawater AEM electrolyzer exhibits an exceptional performance, characterized by remarkable activity (1.78 V at 500 mA cm<sup>–2</sup>) and sustained operational durability (120 h of continuous operation at 500 mA cm<sup>–2</sup>). Notably, the AEM achieves an operational efficiency of 74.0% under 200 mA cm<sup>–2</sup> when tested in a 1.0 M KOH/seawater electrolyte mixture, corresponding to a cost-effective hydrogen production cost of $0.9 per GGE.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 36\",\"pages\":\"15027–15037\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c05425\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c05425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在海水电解过程中,氯离子(Cl -)在阳极表面不可避免的吸附引起了同时发生的竞争性氧化反应(ClOR),从而降低了电解系统的长期运行稳定性。本文采用快速简便的电沉积结合浸渍法制备了富氧空位泡沫镍表面的氢氧化铁镍(Ov-NiFe(OH)X)。Ov可以协同调节nife基氢氧化物的电子结构,实现电子重分布,诱导快速的相重建,而价态较高的活化Ni相作为Lewis酸中心,使Ov- nife (OH)X在海水中具有较高的OH -选择性和Cl -斥力,从而实现对海水的选择性高效氧化。配备Ov-NiFe(OH)X阳极的海水AEM电解槽表现出卓越的性能,其特点是具有显着的活性(500 mA cm-2时1.78 V)和持续的运行耐久性(500 mA cm-2下连续运行120小时)。值得注意的是,当在1.0 M KOH/海水电解质混合物中测试时,AEM在200 mA cm-2下的运行效率为74.0%,相当于每GGE的成本为0.9美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Oxygen Vacancy-Rich NiFe-LDH to Realize Seawater Oxidation with a High Efficiency and Selectivity

Tailoring Oxygen Vacancy-Rich NiFe-LDH to Realize Seawater Oxidation with a High Efficiency and Selectivity

In the context of seawater electrolysis, the inevitable adsorption of chloride ions (Cl) at the anode surface induces a concurrent competitive oxidation reaction (ClOR), which subsequently decreases the prolonged operational stability of the electrolytic system. Here, nickel iron hydroxide supported on nickel foam with rich oxygen vacancies (Ov-NiFe(OH)X) has been synthesized by a fast and simple electrodeposition combined with the impregnation method. Ov can synergistically modulate the electronic structure of NiFe-based hydroxides to realize the electronic redistribution and induce rapid phase reconstruction, and the activated Ni phase with a higher valence acts as a Lewis acid center, which can endow Ov-NiFe(OH)X with high OH selectivity and Cl repulsion in seawater, thus realizing the selective and efficient oxidation of seawater. The Ov-NiFe(OH)X anode-equipped seawater AEM electrolyzer exhibits an exceptional performance, characterized by remarkable activity (1.78 V at 500 mA cm–2) and sustained operational durability (120 h of continuous operation at 500 mA cm–2). Notably, the AEM achieves an operational efficiency of 74.0% under 200 mA cm–2 when tested in a 1.0 M KOH/seawater electrolyte mixture, corresponding to a cost-effective hydrogen production cost of $0.9 per GGE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信