syncom介导的时空氧控制增强木质纤维素降解和营养保存

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinhong Shi, Zhiqiang Sun, Boyi Qi, Guijie Zhang and Qiang Lu*, 
{"title":"syncom介导的时空氧控制增强木质纤维素降解和营养保存","authors":"Jinhong Shi,&nbsp;Zhiqiang Sun,&nbsp;Boyi Qi,&nbsp;Guijie Zhang and Qiang Lu*,&nbsp;","doi":"10.1021/acssuschemeng.5c02042","DOIUrl":null,"url":null,"abstract":"<p >Lignocellulosic biomass holds immense potential as a renewable resource, yet its efficient valorization is hindered by structural recalcitrance and oxygen sensitivity in microbial systems. We engineered a synthetic microbial community (SynCom) comprising <i>Lactobacillus plantarum</i>, <i>Bacillus subtilis</i>, and <i>Aspergillus niger</i> to resolve the oxygen paradox in lignocellulose conversion. The SynCom strategically programmed spatiotemporal oxygen gradients via <i>A. niger’</i>s crabtree-negative metabolism, reducing headspace O<sub>2</sub> from 2% to &lt;0.5% within 48 h and enabling <i>L. plantarum</i> dominance (&gt;83% relative abundance) under stabilized anaerobic microniches. This orchestrated environment facilitated synergistic lignocellulose degradation, with <i>B. subtilis’</i>s GH5 cellulase and <i>A. niger’</i>s β-glucosidase driving 18.57% and 21.64% reductions in cellulose and hemicellulose content, respectively, by day 30. The SynCom achieved cellulose and hemicellulose contents reduced by 18.57% and 21.64% and surpassing aerobic fungal pretreatments, and 141.38 g/kg DM of crude protein retention, 40% higher than traditional systems, through rapid acidification (pH &lt; 4.5) that stabilized microbial communities. Macrogenomics profiling revealed enzymatic cross-feeding (GH43 hemicellulase, CE10 esterase) and metabolic handoffs, while CAZyme analysis highlighted enriched glycoside hydrolases (GH43, GH51) critical for lignocellulose deconstruction. Field trials under realistic oxygen fluctuations (1–5% O<sub>2</sub>) demonstrated 18.9% higher dry matter recovery than commercial inoculants, resolving the historical trade-off between aerobic delignification and anaerobic nutrient preservation. By bridging ecological niche engineering with industrial scalability, this work establishes SynComs as programmable platforms for sustainable biorefineries. Our findings redefine microbial consortia design, offering a blueprint for lignocellulose valorization in oxygen-fluctuating environments and advancing the circular bioeconomy through adaptable microbial solutions.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 36","pages":"14702–14713"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SynCom-Mediated Spatiotemporal Oxygen Control Enhances Lignocellulose Degradation and Nutrient Preservation\",\"authors\":\"Jinhong Shi,&nbsp;Zhiqiang Sun,&nbsp;Boyi Qi,&nbsp;Guijie Zhang and Qiang Lu*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c02042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lignocellulosic biomass holds immense potential as a renewable resource, yet its efficient valorization is hindered by structural recalcitrance and oxygen sensitivity in microbial systems. We engineered a synthetic microbial community (SynCom) comprising <i>Lactobacillus plantarum</i>, <i>Bacillus subtilis</i>, and <i>Aspergillus niger</i> to resolve the oxygen paradox in lignocellulose conversion. The SynCom strategically programmed spatiotemporal oxygen gradients via <i>A. niger’</i>s crabtree-negative metabolism, reducing headspace O<sub>2</sub> from 2% to &lt;0.5% within 48 h and enabling <i>L. plantarum</i> dominance (&gt;83% relative abundance) under stabilized anaerobic microniches. This orchestrated environment facilitated synergistic lignocellulose degradation, with <i>B. subtilis’</i>s GH5 cellulase and <i>A. niger’</i>s β-glucosidase driving 18.57% and 21.64% reductions in cellulose and hemicellulose content, respectively, by day 30. The SynCom achieved cellulose and hemicellulose contents reduced by 18.57% and 21.64% and surpassing aerobic fungal pretreatments, and 141.38 g/kg DM of crude protein retention, 40% higher than traditional systems, through rapid acidification (pH &lt; 4.5) that stabilized microbial communities. Macrogenomics profiling revealed enzymatic cross-feeding (GH43 hemicellulase, CE10 esterase) and metabolic handoffs, while CAZyme analysis highlighted enriched glycoside hydrolases (GH43, GH51) critical for lignocellulose deconstruction. Field trials under realistic oxygen fluctuations (1–5% O<sub>2</sub>) demonstrated 18.9% higher dry matter recovery than commercial inoculants, resolving the historical trade-off between aerobic delignification and anaerobic nutrient preservation. By bridging ecological niche engineering with industrial scalability, this work establishes SynComs as programmable platforms for sustainable biorefineries. Our findings redefine microbial consortia design, offering a blueprint for lignocellulose valorization in oxygen-fluctuating environments and advancing the circular bioeconomy through adaptable microbial solutions.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 36\",\"pages\":\"14702–14713\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c02042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c02042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

木质纤维素生物质作为一种可再生资源具有巨大的潜力,但其有效增值受到微生物系统中的结构顽固性和氧敏感性的阻碍。我们设计了一个由植物乳杆菌、枯草芽孢杆菌和黑曲霉组成的合成微生物群落(SynCom)来解决木质纤维素转化中的氧悖论。SynCom通过黑草蟹的负代谢对时空氧梯度进行了战略性编程,在48小时内将顶空O2从2%降低到0.5%,并在稳定的厌氧微生态环境下实现了植物草的优势地位(相对丰度为83%)。这种精心安排的环境促进了木质纤维素的协同降解,到第30天,枯草芽孢杆菌的GH5纤维素酶和黑草芽孢杆菌的β-葡萄糖苷酶分别使纤维素和半纤维素含量降低了18.57%和21.64%。通过快速酸化(pH < 4.5)稳定微生物群落,SynCom的纤维素和半纤维素含量分别降低了18.57%和21.64%,超过了好氧真菌预处理,粗蛋白质保留率为141.38 g/kg DM,比传统体系高40%。宏观基因组学分析揭示了酶交叉饲养(GH43半纤维素酶,CE10酯酶)和代谢交接,而CAZyme分析强调了对木质纤维素解构至关重要的丰富的糖苷水解酶(GH43, GH51)。在实际氧气波动(1-5% O2)下的现场试验表明,干物质回收率比商业接种剂高18.9%,解决了有氧脱木素作用和厌氧营养保存之间的历史权衡。通过将生态位工程与工业可扩展性相结合,这项工作将SynComs建立为可持续生物炼制的可编程平台。我们的发现重新定义了微生物群落设计,为木质纤维素在氧气波动环境中的增值提供了蓝图,并通过适应性微生物解决方案推进了循环生物经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SynCom-Mediated Spatiotemporal Oxygen Control Enhances Lignocellulose Degradation and Nutrient Preservation

SynCom-Mediated Spatiotemporal Oxygen Control Enhances Lignocellulose Degradation and Nutrient Preservation

Lignocellulosic biomass holds immense potential as a renewable resource, yet its efficient valorization is hindered by structural recalcitrance and oxygen sensitivity in microbial systems. We engineered a synthetic microbial community (SynCom) comprising Lactobacillus plantarum, Bacillus subtilis, and Aspergillus niger to resolve the oxygen paradox in lignocellulose conversion. The SynCom strategically programmed spatiotemporal oxygen gradients via A. niger’s crabtree-negative metabolism, reducing headspace O2 from 2% to <0.5% within 48 h and enabling L. plantarum dominance (>83% relative abundance) under stabilized anaerobic microniches. This orchestrated environment facilitated synergistic lignocellulose degradation, with B. subtilis’s GH5 cellulase and A. niger’s β-glucosidase driving 18.57% and 21.64% reductions in cellulose and hemicellulose content, respectively, by day 30. The SynCom achieved cellulose and hemicellulose contents reduced by 18.57% and 21.64% and surpassing aerobic fungal pretreatments, and 141.38 g/kg DM of crude protein retention, 40% higher than traditional systems, through rapid acidification (pH < 4.5) that stabilized microbial communities. Macrogenomics profiling revealed enzymatic cross-feeding (GH43 hemicellulase, CE10 esterase) and metabolic handoffs, while CAZyme analysis highlighted enriched glycoside hydrolases (GH43, GH51) critical for lignocellulose deconstruction. Field trials under realistic oxygen fluctuations (1–5% O2) demonstrated 18.9% higher dry matter recovery than commercial inoculants, resolving the historical trade-off between aerobic delignification and anaerobic nutrient preservation. By bridging ecological niche engineering with industrial scalability, this work establishes SynComs as programmable platforms for sustainable biorefineries. Our findings redefine microbial consortia design, offering a blueprint for lignocellulose valorization in oxygen-fluctuating environments and advancing the circular bioeconomy through adaptable microbial solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信