靶向葡萄糖抑制海马CCK中间神经元可预防饮食引起的肥胖的认知障碍。

IF 15 1区 医学 Q1 NEUROSCIENCES
Taylor Landry, Laura Perrault, David Melville, Zhe Chen, Ya-Dong Li, Ping Dong, W Todd Farmer, Brent Asrican, Hannah Lee, Libo Zhang, Ryan N Sheehy, Corina Damian, Thomas Collins, Nehemiah Stewart, E S Anton, Juan Song
{"title":"靶向葡萄糖抑制海马CCK中间神经元可预防饮食引起的肥胖的认知障碍。","authors":"Taylor Landry, Laura Perrault, David Melville, Zhe Chen, Ya-Dong Li, Ping Dong, W Todd Farmer, Brent Asrican, Hannah Lee, Libo Zhang, Ryan N Sheehy, Corina Damian, Thomas Collins, Nehemiah Stewart, E S Anton, Juan Song","doi":"10.1016/j.neuron.2025.08.016","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic disorders are closely linked to increased risk of cognitive decline, with Western-style high-fat diets (HFDs) emerging as key contributors. However, the underlying cellular and molecular mechanisms remain unclear. Here, we demonstrate that short-term HFD (stHFD) consumption disrupts memory processing by inducing hyperactivity in dentate gyrus (DG) cholecystokinin-expressing interneurons (CCK-INs). We identify DG CCK-INs as glucose-inhibited neurons that become hyperactive in response to stHFD-induced reductions in DG glucose availability, coinciding with increased phosphorylation of the glycolytic enzyme pyruvate kinase M2 (PKM2). Restoring glucose availability, reducing PKM2 expression, or inhibiting PKM2 activity normalizes CCK-IN activity and rescues memory deficits. Furthermore, interventions preventing CCK-IN hyperactivity or PKM2 phosphorylation protect against long-term cognitive impairments in a diet-induced obesity mouse model. These findings reveal a previously unrecognized mechanism by which dietary metabolic stress disrupts hippocampal function and highlight DG CCK-INs and PKM2 as promising therapeutic targets for preventing cognitive decline associated with metabolic disorders.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting glucose-inhibited hippocampal CCK interneurons prevents cognitive impairment in diet-induced obesity.\",\"authors\":\"Taylor Landry, Laura Perrault, David Melville, Zhe Chen, Ya-Dong Li, Ping Dong, W Todd Farmer, Brent Asrican, Hannah Lee, Libo Zhang, Ryan N Sheehy, Corina Damian, Thomas Collins, Nehemiah Stewart, E S Anton, Juan Song\",\"doi\":\"10.1016/j.neuron.2025.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic disorders are closely linked to increased risk of cognitive decline, with Western-style high-fat diets (HFDs) emerging as key contributors. However, the underlying cellular and molecular mechanisms remain unclear. Here, we demonstrate that short-term HFD (stHFD) consumption disrupts memory processing by inducing hyperactivity in dentate gyrus (DG) cholecystokinin-expressing interneurons (CCK-INs). We identify DG CCK-INs as glucose-inhibited neurons that become hyperactive in response to stHFD-induced reductions in DG glucose availability, coinciding with increased phosphorylation of the glycolytic enzyme pyruvate kinase M2 (PKM2). Restoring glucose availability, reducing PKM2 expression, or inhibiting PKM2 activity normalizes CCK-IN activity and rescues memory deficits. Furthermore, interventions preventing CCK-IN hyperactivity or PKM2 phosphorylation protect against long-term cognitive impairments in a diet-induced obesity mouse model. These findings reveal a previously unrecognized mechanism by which dietary metabolic stress disrupts hippocampal function and highlight DG CCK-INs and PKM2 as promising therapeutic targets for preventing cognitive decline associated with metabolic disorders.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.08.016\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.08.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

代谢紊乱与认知能力下降的风险增加密切相关,西式高脂肪饮食(HFDs)是主要原因。然而,潜在的细胞和分子机制尚不清楚。在这里,我们证明了短期食用HFD (stHFD)通过诱导齿状回(DG)表达胆囊收缩素的中间神经元(CCK-INs)的过度活跃来破坏记忆加工。我们发现DG CCK-INs是葡萄糖抑制的神经元,在sthfd诱导的DG葡萄糖可用性降低的反应中变得过度活跃,与糖酵解酶丙酮酸激酶M2 (PKM2)磷酸化增加相一致。恢复葡萄糖可用性、降低PKM2表达或抑制PKM2活性可使CCK-IN活性正常化并挽救记忆缺陷。此外,在饮食诱导的肥胖小鼠模型中,预防CCK-IN过度活跃或PKM2磷酸化的干预措施可以防止长期认知障碍。这些发现揭示了一种以前未被认识到的机制,即饮食代谢应激破坏海马功能,并强调DG CCK-INs和PKM2是预防代谢紊乱相关认知能力下降的有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting glucose-inhibited hippocampal CCK interneurons prevents cognitive impairment in diet-induced obesity.

Metabolic disorders are closely linked to increased risk of cognitive decline, with Western-style high-fat diets (HFDs) emerging as key contributors. However, the underlying cellular and molecular mechanisms remain unclear. Here, we demonstrate that short-term HFD (stHFD) consumption disrupts memory processing by inducing hyperactivity in dentate gyrus (DG) cholecystokinin-expressing interneurons (CCK-INs). We identify DG CCK-INs as glucose-inhibited neurons that become hyperactive in response to stHFD-induced reductions in DG glucose availability, coinciding with increased phosphorylation of the glycolytic enzyme pyruvate kinase M2 (PKM2). Restoring glucose availability, reducing PKM2 expression, or inhibiting PKM2 activity normalizes CCK-IN activity and rescues memory deficits. Furthermore, interventions preventing CCK-IN hyperactivity or PKM2 phosphorylation protect against long-term cognitive impairments in a diet-induced obesity mouse model. These findings reveal a previously unrecognized mechanism by which dietary metabolic stress disrupts hippocampal function and highlight DG CCK-INs and PKM2 as promising therapeutic targets for preventing cognitive decline associated with metabolic disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信