快速灵活的B群链球菌基因组编辑和CRISPRi Cas12a工具箱

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
G H Hillebrand, S C Carlin, E J Giacobe, H A Stephenson, J Collins, T A Hooven
{"title":"快速灵活的B群链球菌基因组编辑和CRISPRi Cas12a工具箱","authors":"G H Hillebrand, S C Carlin, E J Giacobe, H A Stephenson, J Collins, T A Hooven","doi":"10.1111/mmi.70022","DOIUrl":null,"url":null,"abstract":"<p><p>Streptococcus agalactiae (group B Streptococcus; GBS) is a leading cause of neonatal sepsis and meningitis. Despite advances in molecular microbiology, GBS genome engineering remains laborious due to inefficient mutagenesis protocols. Here, we report a versatile and rapid Cas12a-based toolkit for GBS genetic manipulation. We developed two shuttle plasmids-pGBSedit for genome editing and pGBScrispri for inducible CRISPR interference-derived from an Enterococcus faecium system and optimized for GBS. Using these tools, we achieved targeted gene insertions, markerless deletions, and efficient, template-free mutagenesis via alternative end-joining repair. Furthermore, a catalytically inactive dCas12a variant enabled inducible gene silencing, with strand-specific targeting effects. The system demonstrated broad applicability across multiple GBS strains and minimal off-target activity, as confirmed by whole-genome sequencing. In benchmarking, template-less Cas12a mutagenesis yielded sequence-confirmed mutants in ~7 days and homology-directed edits in ~7-14 days; aTC-resistant colonies arose at ~10<sup>-4</sup> of uninduced CFU, and 27%-65% of resistant clones carried the intended homology-directed edit depending on locus and homology arm length (e.g., ~27% markerless deletion; ~35% insertion; 65% with 1 kb arms). These workflows provide a rapid alternative to temperature-sensitive plasmid mutagenesis protocols that typically require ≥ 4 weeks. This Cas12a-based platform offers an efficient, flexible, and scalable approach to genetic studies in GBS, facilitating functional genomics and accelerating pathogenesis research.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cas12a Toolbox for Rapid and Flexible Group B Streptococcus Genomic Editing and CRISPRi.\",\"authors\":\"G H Hillebrand, S C Carlin, E J Giacobe, H A Stephenson, J Collins, T A Hooven\",\"doi\":\"10.1111/mmi.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Streptococcus agalactiae (group B Streptococcus; GBS) is a leading cause of neonatal sepsis and meningitis. Despite advances in molecular microbiology, GBS genome engineering remains laborious due to inefficient mutagenesis protocols. Here, we report a versatile and rapid Cas12a-based toolkit for GBS genetic manipulation. We developed two shuttle plasmids-pGBSedit for genome editing and pGBScrispri for inducible CRISPR interference-derived from an Enterococcus faecium system and optimized for GBS. Using these tools, we achieved targeted gene insertions, markerless deletions, and efficient, template-free mutagenesis via alternative end-joining repair. Furthermore, a catalytically inactive dCas12a variant enabled inducible gene silencing, with strand-specific targeting effects. The system demonstrated broad applicability across multiple GBS strains and minimal off-target activity, as confirmed by whole-genome sequencing. In benchmarking, template-less Cas12a mutagenesis yielded sequence-confirmed mutants in ~7 days and homology-directed edits in ~7-14 days; aTC-resistant colonies arose at ~10<sup>-4</sup> of uninduced CFU, and 27%-65% of resistant clones carried the intended homology-directed edit depending on locus and homology arm length (e.g., ~27% markerless deletion; ~35% insertion; 65% with 1 kb arms). These workflows provide a rapid alternative to temperature-sensitive plasmid mutagenesis protocols that typically require ≥ 4 weeks. This Cas12a-based platform offers an efficient, flexible, and scalable approach to genetic studies in GBS, facilitating functional genomics and accelerating pathogenesis research.</p>\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.70022\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.70022","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

无乳链球菌(B群链球菌;GBS)是新生儿败血症和脑膜炎的主要原因。尽管分子微生物学取得了进展,但由于诱变方案效率低下,GBS基因组工程仍然很费力。在这里,我们报告了一个多功能和快速的基于cas12的GBS基因操作工具包。我们开发了两个穿梭质粒——用于基因组编辑的pgbsedit和用于诱导型CRISPR干扰的pgbcrispri,它们来自于粪肠球菌系统,并针对GBS进行了优化。使用这些工具,我们通过选择性末端连接修复实现了靶向基因插入、无标记缺失和高效的无模板诱变。此外,催化失活的dCas12a变体能够诱导基因沉默,具有链特异性靶向效应。经全基因组测序证实,该系统广泛适用于多种GBS菌株,并且脱靶活性最小。在基准测试中,无模板Cas12a突变在7天内产生序列确认的突变体,同源性定向编辑在7-14天内产生;atc耐药菌落出现在未诱导CFU的~10-4,27%-65%的耐药克隆根据位点和同源臂长度携带预期的同源定向编辑(例如,~27%的无标记缺失;~35%的插入;65%的1 kb臂)。这些工作流程为通常需要≥4周的温度敏感质粒诱变方案提供了一种快速替代方案。这个基于cas12的平台为GBS的遗传研究提供了一种高效、灵活和可扩展的方法,促进了功能基因组学和加速了发病机制的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cas12a Toolbox for Rapid and Flexible Group B Streptococcus Genomic Editing and CRISPRi.

Streptococcus agalactiae (group B Streptococcus; GBS) is a leading cause of neonatal sepsis and meningitis. Despite advances in molecular microbiology, GBS genome engineering remains laborious due to inefficient mutagenesis protocols. Here, we report a versatile and rapid Cas12a-based toolkit for GBS genetic manipulation. We developed two shuttle plasmids-pGBSedit for genome editing and pGBScrispri for inducible CRISPR interference-derived from an Enterococcus faecium system and optimized for GBS. Using these tools, we achieved targeted gene insertions, markerless deletions, and efficient, template-free mutagenesis via alternative end-joining repair. Furthermore, a catalytically inactive dCas12a variant enabled inducible gene silencing, with strand-specific targeting effects. The system demonstrated broad applicability across multiple GBS strains and minimal off-target activity, as confirmed by whole-genome sequencing. In benchmarking, template-less Cas12a mutagenesis yielded sequence-confirmed mutants in ~7 days and homology-directed edits in ~7-14 days; aTC-resistant colonies arose at ~10-4 of uninduced CFU, and 27%-65% of resistant clones carried the intended homology-directed edit depending on locus and homology arm length (e.g., ~27% markerless deletion; ~35% insertion; 65% with 1 kb arms). These workflows provide a rapid alternative to temperature-sensitive plasmid mutagenesis protocols that typically require ≥ 4 weeks. This Cas12a-based platform offers an efficient, flexible, and scalable approach to genetic studies in GBS, facilitating functional genomics and accelerating pathogenesis research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信