薄荷醇驱动trpm8产热:预防冷伤的机制。

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yujie Li, Yuanyuan Song, Xin Yang, Haiwei Zhu, Hao Yu, Yuan Kong
{"title":"薄荷醇驱动trpm8产热:预防冷伤的机制。","authors":"Yujie Li, Yuanyuan Song, Xin Yang, Haiwei Zhu, Hao Yu, Yuan Kong","doi":"10.1007/s13105-025-01120-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cold injury presents a significant health challenge, causing tissue damage due to prolonged exposure to low temperatures. This study examines menthol's protective effects against cold injury, focusing on its activation of transient receptor potential cation channel subfamily M member 8 (TRPM8), a \"cold-sensing\" receptor, to stimulate thermogenesis in brown adipose tissue (BAT). Male C57BL/6J mice were treated with menthol for 21 days and exposed to -20 °C. Core body temperature, activity levels, and cold injury severity were measured. Network pharmacology methods identified TRPM8 as a potential target, confirmed through molecular docking and pathway analysis. Further experiments inhibited TRPM8 to evaluate its role in menthol-induced thermogenesis and cold tolerance. Menthol significantly raised core body temperature, improved cold tolerance, and reduced cold injury severity in treated mice. Network pharmacology analysis highlighted TRPM8 as a key regulator of BAT thermogenesis through the PKA/UCP1 pathway. TRPM8 inhibition diminished menthol's effect, underscoring its essential role in menthol-mediated thermogenesis. This study demonstrates that menthol activates TRPM8 in BAT, enhancing thermogenesis to prevent cold injury. These findings suggest menthol as a promising natural agent for cold injury prevention, with TRPM8 as a potential therapeutic target.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRPM8-driven thermogenesis by menthol: mechanisms of cold injury prevention.\",\"authors\":\"Yujie Li, Yuanyuan Song, Xin Yang, Haiwei Zhu, Hao Yu, Yuan Kong\",\"doi\":\"10.1007/s13105-025-01120-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cold injury presents a significant health challenge, causing tissue damage due to prolonged exposure to low temperatures. This study examines menthol's protective effects against cold injury, focusing on its activation of transient receptor potential cation channel subfamily M member 8 (TRPM8), a \\\"cold-sensing\\\" receptor, to stimulate thermogenesis in brown adipose tissue (BAT). Male C57BL/6J mice were treated with menthol for 21 days and exposed to -20 °C. Core body temperature, activity levels, and cold injury severity were measured. Network pharmacology methods identified TRPM8 as a potential target, confirmed through molecular docking and pathway analysis. Further experiments inhibited TRPM8 to evaluate its role in menthol-induced thermogenesis and cold tolerance. Menthol significantly raised core body temperature, improved cold tolerance, and reduced cold injury severity in treated mice. Network pharmacology analysis highlighted TRPM8 as a key regulator of BAT thermogenesis through the PKA/UCP1 pathway. TRPM8 inhibition diminished menthol's effect, underscoring its essential role in menthol-mediated thermogenesis. This study demonstrates that menthol activates TRPM8 in BAT, enhancing thermogenesis to prevent cold injury. These findings suggest menthol as a promising natural agent for cold injury prevention, with TRPM8 as a potential therapeutic target.</p>\",\"PeriodicalId\":16779,\"journal\":{\"name\":\"Journal of physiology and biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physiology and biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13105-025-01120-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-025-01120-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

低温损伤是一项重大的健康挑战,由于长期暴露在低温下而导致组织损伤。本研究探讨了薄荷醇对冷损伤的保护作用,重点关注其激活瞬时受体电位阳离子通道亚家族M成员8 (TRPM8),一种“冷感应”受体,以刺激棕色脂肪组织(BAT)的产热作用。雄性C57BL/6J小鼠经薄荷醇处理21 d,暴露于-20°C环境。测量核心体温、活动水平和冷伤严重程度。网络药理学方法鉴定出TRPM8为潜在靶点,通过分子对接和通路分析确认。进一步的实验抑制了TRPM8,以评估其在薄荷醇诱导的产热和耐寒性中的作用。薄荷醇显著提高了治疗小鼠的核心体温,改善了耐寒性,降低了冷损伤的严重程度。网络药理学分析强调TRPM8是通过PKA/UCP1途径调控BAT产热的关键因子。TRPM8的抑制减弱了薄荷醇的作用,强调了其在薄荷醇介导的生热作用中的重要作用。本研究表明薄荷醇激活BAT中的TRPM8,增强产热作用以预防冷损伤。这些发现表明薄荷醇是一种很有前景的预防冷损伤的天然药物,而TRPM8是潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TRPM8-driven thermogenesis by menthol: mechanisms of cold injury prevention.

Cold injury presents a significant health challenge, causing tissue damage due to prolonged exposure to low temperatures. This study examines menthol's protective effects against cold injury, focusing on its activation of transient receptor potential cation channel subfamily M member 8 (TRPM8), a "cold-sensing" receptor, to stimulate thermogenesis in brown adipose tissue (BAT). Male C57BL/6J mice were treated with menthol for 21 days and exposed to -20 °C. Core body temperature, activity levels, and cold injury severity were measured. Network pharmacology methods identified TRPM8 as a potential target, confirmed through molecular docking and pathway analysis. Further experiments inhibited TRPM8 to evaluate its role in menthol-induced thermogenesis and cold tolerance. Menthol significantly raised core body temperature, improved cold tolerance, and reduced cold injury severity in treated mice. Network pharmacology analysis highlighted TRPM8 as a key regulator of BAT thermogenesis through the PKA/UCP1 pathway. TRPM8 inhibition diminished menthol's effect, underscoring its essential role in menthol-mediated thermogenesis. This study demonstrates that menthol activates TRPM8 in BAT, enhancing thermogenesis to prevent cold injury. These findings suggest menthol as a promising natural agent for cold injury prevention, with TRPM8 as a potential therapeutic target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信