Jisheng Liu, Qiuying He, Xianfeng Lin, Guy Smagghe
{"title":"纳米粒子介导的RNA干扰在昆虫中的最新进展:揭示害虫防治的新领域。","authors":"Jisheng Liu, Qiuying He, Xianfeng Lin, Guy Smagghe","doi":"10.1016/j.jinsphys.2025.104884","DOIUrl":null,"url":null,"abstract":"<p><p>RNA interference (RNAi), a key post-transcriptional gene silencing mechanism, has emerged as a powerful tool in insect physiology research and the development of next-generation pest control methods. In insects, the small interfering RNA (siRNA) pathway, which is activated by long double-stranded RNA (dsRNA), represents the primary mechanism through which RNAi operates. This comprehensive review explores the recent innovations that have increasingly centered on nanoparticle-based delivery systems to overcome physiological barriers in insects, such as nuclease activity in the gut and inefficient cellular uptake. Nanomaterials based on different (bio)chemistries such as natural organic (chitosan), liposomal-based (liposomes), inorganic (star polycations, carbon quantum dots, layered double hydroxides), synthetic polymers (guanylated polymers), and peptide-based (branched amphiphilic peptide capsules, cell-penetrating peptides), have been employed to encapsulate dsRNA, enhancing its stability and facilitating its targeted delivery to insect tissues. These nanoparticles improve systemic RNAi responses by enabling the efficient traversal of cellular membranes and endosomal escape, crucial steps within the unique physiological context of insect cells. Their nanoscale dimensions, biocompatibility, low toxicity, and cost-effectiveness position them at the forefront of RNAi innovation. As our understanding of insect molecular and cellular biology deepens, these nanocarriers offer transformative potential in the development of species-specific, eco-friendly insecticides, marking a significant advance in both insect physiology studies and sustainable pest management technologies.</p>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":" ","pages":"104884"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in nanoparticle-mediated RNA interference in insects: Unveiling new frontiers in pest control.\",\"authors\":\"Jisheng Liu, Qiuying He, Xianfeng Lin, Guy Smagghe\",\"doi\":\"10.1016/j.jinsphys.2025.104884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA interference (RNAi), a key post-transcriptional gene silencing mechanism, has emerged as a powerful tool in insect physiology research and the development of next-generation pest control methods. In insects, the small interfering RNA (siRNA) pathway, which is activated by long double-stranded RNA (dsRNA), represents the primary mechanism through which RNAi operates. This comprehensive review explores the recent innovations that have increasingly centered on nanoparticle-based delivery systems to overcome physiological barriers in insects, such as nuclease activity in the gut and inefficient cellular uptake. Nanomaterials based on different (bio)chemistries such as natural organic (chitosan), liposomal-based (liposomes), inorganic (star polycations, carbon quantum dots, layered double hydroxides), synthetic polymers (guanylated polymers), and peptide-based (branched amphiphilic peptide capsules, cell-penetrating peptides), have been employed to encapsulate dsRNA, enhancing its stability and facilitating its targeted delivery to insect tissues. These nanoparticles improve systemic RNAi responses by enabling the efficient traversal of cellular membranes and endosomal escape, crucial steps within the unique physiological context of insect cells. Their nanoscale dimensions, biocompatibility, low toxicity, and cost-effectiveness position them at the forefront of RNAi innovation. As our understanding of insect molecular and cellular biology deepens, these nanocarriers offer transformative potential in the development of species-specific, eco-friendly insecticides, marking a significant advance in both insect physiology studies and sustainable pest management technologies.</p>\",\"PeriodicalId\":16189,\"journal\":{\"name\":\"Journal of insect physiology\",\"volume\":\" \",\"pages\":\"104884\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of insect physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jinsphys.2025.104884\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jinsphys.2025.104884","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Recent progress in nanoparticle-mediated RNA interference in insects: Unveiling new frontiers in pest control.
RNA interference (RNAi), a key post-transcriptional gene silencing mechanism, has emerged as a powerful tool in insect physiology research and the development of next-generation pest control methods. In insects, the small interfering RNA (siRNA) pathway, which is activated by long double-stranded RNA (dsRNA), represents the primary mechanism through which RNAi operates. This comprehensive review explores the recent innovations that have increasingly centered on nanoparticle-based delivery systems to overcome physiological barriers in insects, such as nuclease activity in the gut and inefficient cellular uptake. Nanomaterials based on different (bio)chemistries such as natural organic (chitosan), liposomal-based (liposomes), inorganic (star polycations, carbon quantum dots, layered double hydroxides), synthetic polymers (guanylated polymers), and peptide-based (branched amphiphilic peptide capsules, cell-penetrating peptides), have been employed to encapsulate dsRNA, enhancing its stability and facilitating its targeted delivery to insect tissues. These nanoparticles improve systemic RNAi responses by enabling the efficient traversal of cellular membranes and endosomal escape, crucial steps within the unique physiological context of insect cells. Their nanoscale dimensions, biocompatibility, low toxicity, and cost-effectiveness position them at the forefront of RNAi innovation. As our understanding of insect molecular and cellular biology deepens, these nanocarriers offer transformative potential in the development of species-specific, eco-friendly insecticides, marking a significant advance in both insect physiology studies and sustainable pest management technologies.
期刊介绍:
All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.