{"title":"一种利用非常规图案设计来提高3D生物打印PCL支架机械强度的制造方法。","authors":"Yating Wang, Minglei Bi, Mai Xu","doi":"10.1177/08853282251374420","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> Cartilage tissue has a very limited self-repairing capacity due to its aneural and avascular nature, and current clinical strategies fail to consistently regenerate normal hyaline cartilage for effective chondrogenic repair. This study aims to explore the potential of 3D bioprinting, particularly through hybrid constructs of cell-embedded soft and synthetic materials, as a solution for enhancing the mechanical and biological properties of tissue-engineered scaffolds. <b>Methods:</b> We developed and implemented optimization protocols for melt-extrusion bioprinting to fine-tune mechanical properties by adjusting strand distance and pattern shapes. Gelatin methacryloyl (GelMA) and polycaprolactone (PCL) hybrid constructs were fabricated to investigate the synergy between materials in achieving improved mechanical strength while preserving biological compatibility. <b>Results:</b> The optimized printing parameters yielded scaffolds with compressive modulus values aligning closely with the target, demonstrating the clinical applicability of the method. The hybrid GelMA-PCL constructs exhibited enhanced mechanical properties and retained a high biological fraction, validating their potential for chondrogenic applications. <b>Conclusion:</b> This study presents an innovative approach to improving the mechanical strength of tissue-engineered constructs through architectural optimization. These findings represent a significant step toward advancing tissue-engineered cartilaginous products from laboratory research to clinical applications, addressing a critical challenge in cartilage repair.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251374420"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fabrication method using unconventional pattern designs to enhance the mechanical strength of 3D bio-printed PCL scaffolds.\",\"authors\":\"Yating Wang, Minglei Bi, Mai Xu\",\"doi\":\"10.1177/08853282251374420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> Cartilage tissue has a very limited self-repairing capacity due to its aneural and avascular nature, and current clinical strategies fail to consistently regenerate normal hyaline cartilage for effective chondrogenic repair. This study aims to explore the potential of 3D bioprinting, particularly through hybrid constructs of cell-embedded soft and synthetic materials, as a solution for enhancing the mechanical and biological properties of tissue-engineered scaffolds. <b>Methods:</b> We developed and implemented optimization protocols for melt-extrusion bioprinting to fine-tune mechanical properties by adjusting strand distance and pattern shapes. Gelatin methacryloyl (GelMA) and polycaprolactone (PCL) hybrid constructs were fabricated to investigate the synergy between materials in achieving improved mechanical strength while preserving biological compatibility. <b>Results:</b> The optimized printing parameters yielded scaffolds with compressive modulus values aligning closely with the target, demonstrating the clinical applicability of the method. The hybrid GelMA-PCL constructs exhibited enhanced mechanical properties and retained a high biological fraction, validating their potential for chondrogenic applications. <b>Conclusion:</b> This study presents an innovative approach to improving the mechanical strength of tissue-engineered constructs through architectural optimization. These findings represent a significant step toward advancing tissue-engineered cartilaginous products from laboratory research to clinical applications, addressing a critical challenge in cartilage repair.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251374420\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251374420\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251374420","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A fabrication method using unconventional pattern designs to enhance the mechanical strength of 3D bio-printed PCL scaffolds.
Purpose: Cartilage tissue has a very limited self-repairing capacity due to its aneural and avascular nature, and current clinical strategies fail to consistently regenerate normal hyaline cartilage for effective chondrogenic repair. This study aims to explore the potential of 3D bioprinting, particularly through hybrid constructs of cell-embedded soft and synthetic materials, as a solution for enhancing the mechanical and biological properties of tissue-engineered scaffolds. Methods: We developed and implemented optimization protocols for melt-extrusion bioprinting to fine-tune mechanical properties by adjusting strand distance and pattern shapes. Gelatin methacryloyl (GelMA) and polycaprolactone (PCL) hybrid constructs were fabricated to investigate the synergy between materials in achieving improved mechanical strength while preserving biological compatibility. Results: The optimized printing parameters yielded scaffolds with compressive modulus values aligning closely with the target, demonstrating the clinical applicability of the method. The hybrid GelMA-PCL constructs exhibited enhanced mechanical properties and retained a high biological fraction, validating their potential for chondrogenic applications. Conclusion: This study presents an innovative approach to improving the mechanical strength of tissue-engineered constructs through architectural optimization. These findings represent a significant step toward advancing tissue-engineered cartilaginous products from laboratory research to clinical applications, addressing a critical challenge in cartilage repair.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.