Michael Beer, Philip Hinchliffe, Marko Hanževački, Christopher R Bethel, Catherine L Tooke, Marc W Van der Kamp, Krisztina M Papp-Wallace, Robert A Bonomo, Stuart Shapiro, Adrian J Mulholland, James Spencer
{"title":"恩美唑巴坦和他唑巴坦抑制广谱β-内酰胺酶GES-1的机制基础。","authors":"Michael Beer, Philip Hinchliffe, Marko Hanževački, Christopher R Bethel, Catherine L Tooke, Marc W Van der Kamp, Krisztina M Papp-Wallace, Robert A Bonomo, Stuart Shapiro, Adrian J Mulholland, James Spencer","doi":"10.1002/1873-3468.70155","DOIUrl":null,"url":null,"abstract":"<p><p>β-Lactamase-catalysed hydrolysis is the primary form of β-lactam antibiotic resistance in Gram-negative bacteria. The penicillanic acid sulfone (PAS) enmetazobactam is thought to inhibit extended-spectrum β-lactamases (ESBLs) by fragmentation of an initial acyl-enzyme to form an active-site lysinoalanine cross link. We investigate interactions of enmetazobactam and its congener tazobactam with GES-1, an ESBL with structural features of carbapenem-hydrolysing β-lactamases. Crystal structures show different breakdown products of the two inhibitors covalently bound to the catalytic Ser70, assigned using quantum mechanics/molecular mechanics (QM/MM) calculations. We find no evidence for lysinoalanine formation, with mass spectrometry indicating active enzyme regeneration, behaviour previously observed for carbapenem-hydrolysing enzymes, but not ESBLs. This work establishes that PAS inhibitors interact with diverse β-lactamases by differing mechanisms, which should inform development of future compounds.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic basis for inhibition of the extended-spectrum β-lactamase GES-1 by enmetazobactam and tazobactam.\",\"authors\":\"Michael Beer, Philip Hinchliffe, Marko Hanževački, Christopher R Bethel, Catherine L Tooke, Marc W Van der Kamp, Krisztina M Papp-Wallace, Robert A Bonomo, Stuart Shapiro, Adrian J Mulholland, James Spencer\",\"doi\":\"10.1002/1873-3468.70155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-Lactamase-catalysed hydrolysis is the primary form of β-lactam antibiotic resistance in Gram-negative bacteria. The penicillanic acid sulfone (PAS) enmetazobactam is thought to inhibit extended-spectrum β-lactamases (ESBLs) by fragmentation of an initial acyl-enzyme to form an active-site lysinoalanine cross link. We investigate interactions of enmetazobactam and its congener tazobactam with GES-1, an ESBL with structural features of carbapenem-hydrolysing β-lactamases. Crystal structures show different breakdown products of the two inhibitors covalently bound to the catalytic Ser70, assigned using quantum mechanics/molecular mechanics (QM/MM) calculations. We find no evidence for lysinoalanine formation, with mass spectrometry indicating active enzyme regeneration, behaviour previously observed for carbapenem-hydrolysing enzymes, but not ESBLs. This work establishes that PAS inhibitors interact with diverse β-lactamases by differing mechanisms, which should inform development of future compounds.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.70155\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70155","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Mechanistic basis for inhibition of the extended-spectrum β-lactamase GES-1 by enmetazobactam and tazobactam.
β-Lactamase-catalysed hydrolysis is the primary form of β-lactam antibiotic resistance in Gram-negative bacteria. The penicillanic acid sulfone (PAS) enmetazobactam is thought to inhibit extended-spectrum β-lactamases (ESBLs) by fragmentation of an initial acyl-enzyme to form an active-site lysinoalanine cross link. We investigate interactions of enmetazobactam and its congener tazobactam with GES-1, an ESBL with structural features of carbapenem-hydrolysing β-lactamases. Crystal structures show different breakdown products of the two inhibitors covalently bound to the catalytic Ser70, assigned using quantum mechanics/molecular mechanics (QM/MM) calculations. We find no evidence for lysinoalanine formation, with mass spectrometry indicating active enzyme regeneration, behaviour previously observed for carbapenem-hydrolysing enzymes, but not ESBLs. This work establishes that PAS inhibitors interact with diverse β-lactamases by differing mechanisms, which should inform development of future compounds.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.