{"title":"实体瘤和肉瘤中癌症相关成纤维细胞:异质性、功能和治疗意义。","authors":"Omar Badran, Idan Cohen, Gil Bar-Sela","doi":"10.3390/cells14171398","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) are crucial regulators of the tumor microenvironment (TME), promoting cancer progression, immune suppression, and therapy resistance. Single-cell transcriptomics has identified at least five distinct CAF subtypes: myofibroblastic (myCAFs), inflammatory (iCAFs), antigen-presenting (apCAFs), metabolic (meCAFs), and vascular/developmental (vCAFs/dCAFs), each with unique localization, signaling, and functions. While CAFs are well studied in epithelial cancers, their roles in sarcomas are less understood despite the shared mesenchymal origin of tumor and stromal cells. This overlap blurs the line between malignant and non-malignant fibroblasts, raising fundamental questions about the identity of CAFs in mesenchymal tumors. In this narrative review, we explore the heterogeneity and plasticity of CAFs across solid tumors, focusing on their role in immune evasion, epithelial-to-mesenchymal transition (EMT), and resistance to chemotherapy, targeted therapy, and immunotherapy. We highlight emerging evidence on CAF-like cells in sarcomas and their contribution to tumor invasion, immune exclusion, and metastatic niche formation. We also assess new strategies to target or reprogram CAFs and suggest that CAF profiling may serve as a potential biomarker for patient stratification. Understanding CAF biology across various tumor types, including those with dense stroma and immunologically cold sarcomas, is crucial for developing more effective, personalized cancer treatments.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 17","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12427924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cancer-Associated Fibroblasts in Solid Tumors and Sarcomas: Heterogeneity, Function, and Therapeutic Implications.\",\"authors\":\"Omar Badran, Idan Cohen, Gil Bar-Sela\",\"doi\":\"10.3390/cells14171398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer-associated fibroblasts (CAFs) are crucial regulators of the tumor microenvironment (TME), promoting cancer progression, immune suppression, and therapy resistance. Single-cell transcriptomics has identified at least five distinct CAF subtypes: myofibroblastic (myCAFs), inflammatory (iCAFs), antigen-presenting (apCAFs), metabolic (meCAFs), and vascular/developmental (vCAFs/dCAFs), each with unique localization, signaling, and functions. While CAFs are well studied in epithelial cancers, their roles in sarcomas are less understood despite the shared mesenchymal origin of tumor and stromal cells. This overlap blurs the line between malignant and non-malignant fibroblasts, raising fundamental questions about the identity of CAFs in mesenchymal tumors. In this narrative review, we explore the heterogeneity and plasticity of CAFs across solid tumors, focusing on their role in immune evasion, epithelial-to-mesenchymal transition (EMT), and resistance to chemotherapy, targeted therapy, and immunotherapy. We highlight emerging evidence on CAF-like cells in sarcomas and their contribution to tumor invasion, immune exclusion, and metastatic niche formation. We also assess new strategies to target or reprogram CAFs and suggest that CAF profiling may serve as a potential biomarker for patient stratification. Understanding CAF biology across various tumor types, including those with dense stroma and immunologically cold sarcomas, is crucial for developing more effective, personalized cancer treatments.</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"14 17\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12427924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells14171398\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14171398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cancer-Associated Fibroblasts in Solid Tumors and Sarcomas: Heterogeneity, Function, and Therapeutic Implications.
Cancer-associated fibroblasts (CAFs) are crucial regulators of the tumor microenvironment (TME), promoting cancer progression, immune suppression, and therapy resistance. Single-cell transcriptomics has identified at least five distinct CAF subtypes: myofibroblastic (myCAFs), inflammatory (iCAFs), antigen-presenting (apCAFs), metabolic (meCAFs), and vascular/developmental (vCAFs/dCAFs), each with unique localization, signaling, and functions. While CAFs are well studied in epithelial cancers, their roles in sarcomas are less understood despite the shared mesenchymal origin of tumor and stromal cells. This overlap blurs the line between malignant and non-malignant fibroblasts, raising fundamental questions about the identity of CAFs in mesenchymal tumors. In this narrative review, we explore the heterogeneity and plasticity of CAFs across solid tumors, focusing on their role in immune evasion, epithelial-to-mesenchymal transition (EMT), and resistance to chemotherapy, targeted therapy, and immunotherapy. We highlight emerging evidence on CAF-like cells in sarcomas and their contribution to tumor invasion, immune exclusion, and metastatic niche formation. We also assess new strategies to target or reprogram CAFs and suggest that CAF profiling may serve as a potential biomarker for patient stratification. Understanding CAF biology across various tumor types, including those with dense stroma and immunologically cold sarcomas, is crucial for developing more effective, personalized cancer treatments.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.