方形域贻贝-藻类模型的时空动力学。

IF 2.2 4区 数学 Q2 BIOLOGY
Daifeng Duan, Zuolin Shen, Yuan Yuan, Quanxing Liu
{"title":"方形域贻贝-藻类模型的时空动力学。","authors":"Daifeng Duan, Zuolin Shen, Yuan Yuan, Quanxing Liu","doi":"10.1007/s11538-025-01526-x","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the spatiotemporal dynamics of a non-local mussel-algae model, defined on a square domain with time delays and Neumann boundary conditions. Initially, we examine the well-posedness of the solutions. By analyzing the multiplicity of eigenvalues, we establish the existence of both Hopf and equivariant Hopf bifurcations. Using tools such as phase space decomposition, center manifold reduction, equivariant Hopf bifurcation theory, and the normal form method, we derive third-order truncated normal forms near the equivariant Hopf bifurcation point. This allows us to classify the system's spatiotemporal patterns into ten distinct types within the parameter plane. Unlike models constructed on one-dimensional domains, the two-dimensional symmetric model demonstrates more complex dynamic behaviors, including standing waves, rotating waves, stripes, and spots. Numerical simulations not only corroborate the theoretical predictions but also align with field observation in ecological systems, shedding light on the mechanisms underlying the formation of regular patterns due to the behavioral aggregation of mussels.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 10","pages":"150"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Dynamics of a Mussel-Algae Model on the Square Domain.\",\"authors\":\"Daifeng Duan, Zuolin Shen, Yuan Yuan, Quanxing Liu\",\"doi\":\"10.1007/s11538-025-01526-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the spatiotemporal dynamics of a non-local mussel-algae model, defined on a square domain with time delays and Neumann boundary conditions. Initially, we examine the well-posedness of the solutions. By analyzing the multiplicity of eigenvalues, we establish the existence of both Hopf and equivariant Hopf bifurcations. Using tools such as phase space decomposition, center manifold reduction, equivariant Hopf bifurcation theory, and the normal form method, we derive third-order truncated normal forms near the equivariant Hopf bifurcation point. This allows us to classify the system's spatiotemporal patterns into ten distinct types within the parameter plane. Unlike models constructed on one-dimensional domains, the two-dimensional symmetric model demonstrates more complex dynamic behaviors, including standing waves, rotating waves, stripes, and spots. Numerical simulations not only corroborate the theoretical predictions but also align with field observation in ecological systems, shedding light on the mechanisms underlying the formation of regular patterns due to the behavioral aggregation of mussels.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 10\",\"pages\":\"150\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-025-01526-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01526-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了非局部贻贝-藻类模型的时空动力学,该模型定义在具有时滞和诺伊曼边界条件的方形域上。首先,我们检验解的适定性。通过分析特征值的多重性,建立了Hopf分岔和等变Hopf分岔的存在性。利用相空间分解、中心流形约简、等变Hopf分岔理论和范式方法,导出了等变Hopf分岔点附近的三阶截断范式。这允许我们在参数平面内将系统的时空模式分为十种不同的类型。与一维模型不同,二维对称模型展示了更复杂的动态行为,包括驻波、旋转波、条纹和斑点。数值模拟不仅证实了理论预测,而且与生态系统的野外观测相吻合,揭示了贻贝行为聚集形成规则模式的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal Dynamics of a Mussel-Algae Model on the Square Domain.

We investigate the spatiotemporal dynamics of a non-local mussel-algae model, defined on a square domain with time delays and Neumann boundary conditions. Initially, we examine the well-posedness of the solutions. By analyzing the multiplicity of eigenvalues, we establish the existence of both Hopf and equivariant Hopf bifurcations. Using tools such as phase space decomposition, center manifold reduction, equivariant Hopf bifurcation theory, and the normal form method, we derive third-order truncated normal forms near the equivariant Hopf bifurcation point. This allows us to classify the system's spatiotemporal patterns into ten distinct types within the parameter plane. Unlike models constructed on one-dimensional domains, the two-dimensional symmetric model demonstrates more complex dynamic behaviors, including standing waves, rotating waves, stripes, and spots. Numerical simulations not only corroborate the theoretical predictions but also align with field observation in ecological systems, shedding light on the mechanisms underlying the formation of regular patterns due to the behavioral aggregation of mussels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信