Michael G Ricos, Bethan A Cole, Rashid Hussain, Grigori Y Rychkov, Zeeshan Shaukat, Nadia Pilati, Stephen P Muench, Katie J Simmons, Leanne M Dibbens, Jonathan D Lippiat
{"title":"通过计算机、细胞和果蝇模型鉴定新的kcnt1 -癫痫药物。","authors":"Michael G Ricos, Bethan A Cole, Rashid Hussain, Grigori Y Rychkov, Zeeshan Shaukat, Nadia Pilati, Stephen P Muench, Katie J Simmons, Leanne M Dibbens, Jonathan D Lippiat","doi":"10.1002/ana.78031","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Hyperactive KCNT1 potassium channels, caused by gain-of-function mutations, are associated with a range of epilepsy disorders. Patients typically experience drug-resistant seizures and, in cases with infantile onset, developmental regression can follow. KCNT1-related disorders include epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. There are currently no effective treatments for KCNT1 epilepsies, but suppressing overactive channels poses a potential strategy.</p><p><strong>Methods: </strong>Using the KCNT1 channel structure we in silico screened a library of known drugs for those predicted to block the channel pore to inhibit channel activity. Cellular KCNT1 channel inhibition was analyzed using electrophysiology and Drosophila bang-sensitive assays were used to analyze seizure suppression. Brain penetration of one drug was analyzed using liquid chromatography-mass spectrometry in a mouse.</p><p><strong>Results: </strong>Eight known drugs were investigated in vitro for their effects on patient-specific mutant KCNT1 channels, with 4 drugs showing significant reduction of K<sup>+</sup> current amplitudes. The action of the 4 drugs was then analyzed in vivo and 2 were found to reduce the seizure phenotype in humanized Drosophila KCNT1 epilepsy models. One drug, antrafenine, was shown to cross the blood-brain barrier in mice.</p><p><strong>Interpretation: </strong>This study identified a known drug, antrafenine, that reduces KCNT1 channel activity, reduces seizure activity in Drosophila, and crosses the blood-brain barrier in the mouse, suggesting its potential applicability as a new treatment for KCNT1 epilepsy. The sequential in silico, in vitro, and in vivo mechanism-based drug selection strategy used here may have broader application for other human disorders where a disease mechanism has been identified. ANN NEUROL 2025.</p>","PeriodicalId":127,"journal":{"name":"Annals of Neurology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of New KCNT1-Epilepsy Drugs by In Silico, Cell, and Drosophila Modeling.\",\"authors\":\"Michael G Ricos, Bethan A Cole, Rashid Hussain, Grigori Y Rychkov, Zeeshan Shaukat, Nadia Pilati, Stephen P Muench, Katie J Simmons, Leanne M Dibbens, Jonathan D Lippiat\",\"doi\":\"10.1002/ana.78031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Hyperactive KCNT1 potassium channels, caused by gain-of-function mutations, are associated with a range of epilepsy disorders. Patients typically experience drug-resistant seizures and, in cases with infantile onset, developmental regression can follow. KCNT1-related disorders include epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. There are currently no effective treatments for KCNT1 epilepsies, but suppressing overactive channels poses a potential strategy.</p><p><strong>Methods: </strong>Using the KCNT1 channel structure we in silico screened a library of known drugs for those predicted to block the channel pore to inhibit channel activity. Cellular KCNT1 channel inhibition was analyzed using electrophysiology and Drosophila bang-sensitive assays were used to analyze seizure suppression. Brain penetration of one drug was analyzed using liquid chromatography-mass spectrometry in a mouse.</p><p><strong>Results: </strong>Eight known drugs were investigated in vitro for their effects on patient-specific mutant KCNT1 channels, with 4 drugs showing significant reduction of K<sup>+</sup> current amplitudes. The action of the 4 drugs was then analyzed in vivo and 2 were found to reduce the seizure phenotype in humanized Drosophila KCNT1 epilepsy models. One drug, antrafenine, was shown to cross the blood-brain barrier in mice.</p><p><strong>Interpretation: </strong>This study identified a known drug, antrafenine, that reduces KCNT1 channel activity, reduces seizure activity in Drosophila, and crosses the blood-brain barrier in the mouse, suggesting its potential applicability as a new treatment for KCNT1 epilepsy. The sequential in silico, in vitro, and in vivo mechanism-based drug selection strategy used here may have broader application for other human disorders where a disease mechanism has been identified. ANN NEUROL 2025.</p>\",\"PeriodicalId\":127,\"journal\":{\"name\":\"Annals of Neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ana.78031\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ana.78031","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Identification of New KCNT1-Epilepsy Drugs by In Silico, Cell, and Drosophila Modeling.
Objective: Hyperactive KCNT1 potassium channels, caused by gain-of-function mutations, are associated with a range of epilepsy disorders. Patients typically experience drug-resistant seizures and, in cases with infantile onset, developmental regression can follow. KCNT1-related disorders include epilepsy of infancy with migrating focal seizures and sleep-related hypermotor epilepsy. There are currently no effective treatments for KCNT1 epilepsies, but suppressing overactive channels poses a potential strategy.
Methods: Using the KCNT1 channel structure we in silico screened a library of known drugs for those predicted to block the channel pore to inhibit channel activity. Cellular KCNT1 channel inhibition was analyzed using electrophysiology and Drosophila bang-sensitive assays were used to analyze seizure suppression. Brain penetration of one drug was analyzed using liquid chromatography-mass spectrometry in a mouse.
Results: Eight known drugs were investigated in vitro for their effects on patient-specific mutant KCNT1 channels, with 4 drugs showing significant reduction of K+ current amplitudes. The action of the 4 drugs was then analyzed in vivo and 2 were found to reduce the seizure phenotype in humanized Drosophila KCNT1 epilepsy models. One drug, antrafenine, was shown to cross the blood-brain barrier in mice.
Interpretation: This study identified a known drug, antrafenine, that reduces KCNT1 channel activity, reduces seizure activity in Drosophila, and crosses the blood-brain barrier in the mouse, suggesting its potential applicability as a new treatment for KCNT1 epilepsy. The sequential in silico, in vitro, and in vivo mechanism-based drug selection strategy used here may have broader application for other human disorders where a disease mechanism has been identified. ANN NEUROL 2025.
期刊介绍:
Annals of Neurology publishes original articles with potential for high impact in understanding the pathogenesis, clinical and laboratory features, diagnosis, treatment, outcomes and science underlying diseases of the human nervous system. Articles should ideally be of broad interest to the academic neurological community rather than solely to subspecialists in a particular field. Studies involving experimental model system, including those in cell and organ cultures and animals, of direct translational relevance to the understanding of neurological disease are also encouraged.