{"title":"来自溶液自组装的分子玻璃。","authors":"Fei Nie, and , Dongpeng Yan*, ","doi":"10.1021/acs.accounts.5c00425","DOIUrl":null,"url":null,"abstract":"<p >Glass is a vital material across diverse fields including photovoltaics, construction, medicine, telecommunications, and display technologies. Beyond conventional inorganic, metallic, and polymeric glasses, recent developments have introduced new families, such as supramolecular glasses (SGs), which exhibit greater structural diversity, molecular tunability, and functional versatility. Formed through noncovalent interactions, SGs allow for the incorporation of a wide range of molecular components and architectures.</p><p >However, SG fabrication remains largely dependent on melt-quenching, a method that demands high temperatures, costly equipment, and complex procedures. Additionally, thermal decomposition of many components prior to melting limits the design space for new SGs. These constraints highlight the need for alternative low-temperature synthesis methods. To address this challenge, our group recently introduced a sustainable and bottom-up approach based on metal–histidine complexes, termed evaporation-induced self-assembly (EISA). This solution-based technique enables the efficient production of various SGs, including single- and multicomponent organic glasses and organic–inorganic hybrids.</p><p >In the EISA process, molecular precursors are first dissolved in a solvent to form a uniform solution. Controlled solvent evaporation─under ambient pressure and moderate temperatures─increases viscosity, impeding the orderly organization of monomers. Simultaneously, polymerization progresses, leading to vitrification and glass formation. This low-energy, equipment-free process eliminates the need for thermal treatment or postprocessing and allows for solution-based recycling, aligning with principles of green chemistry and sustainable materials development.</p><p >Compared with inorganic and metallic glasses, solution-processed SGs offer several key advantages, including low density, high transparency, recyclability, and superior processability. Their properties can be tailored through the incorporation of functional moieties, such as dye molecules or metal ions, enabling tunable photoluminescence. The rigid SG matrix effectively restricts molecular vibrations, resulting in ultralong room-temperature phosphorescence (RTP), while the addition of chiral components can generate circularly polarized luminescence (CPL).</p><p >SGs fabricated via EISA exhibit multifunctionality, making them suitable for a wide range of applications. Their intrinsic ability to self-assemble into varied morphologies is ideal for the fabrication of advanced optical elements. The high viscosity of precursor solutions during evaporation facilitates their use as transparent adhesives. Additionally, their prolonged RTP performance also makes them attractive for anticounterfeiting and information security technologies.</p><p >The continued development of solution-assembled SGs will depend on several critical advances: scalable manufacturing methods, the integration of sustainable bio-based components, enhanced mechanical durability and flexibility, and the expansion of functional building block libraries. These innovations are expected to broaden the utility and performance of SGs across a wide range of fields. With ongoing progress, solution-processed SGs are poised to drive the next generation of functional glasses in energy, electronics, displays, and beyond.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"58 19","pages":"3010–3020"},"PeriodicalIF":17.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Glass from Solution Self-Assembly\",\"authors\":\"Fei Nie, and , Dongpeng Yan*, \",\"doi\":\"10.1021/acs.accounts.5c00425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Glass is a vital material across diverse fields including photovoltaics, construction, medicine, telecommunications, and display technologies. Beyond conventional inorganic, metallic, and polymeric glasses, recent developments have introduced new families, such as supramolecular glasses (SGs), which exhibit greater structural diversity, molecular tunability, and functional versatility. Formed through noncovalent interactions, SGs allow for the incorporation of a wide range of molecular components and architectures.</p><p >However, SG fabrication remains largely dependent on melt-quenching, a method that demands high temperatures, costly equipment, and complex procedures. Additionally, thermal decomposition of many components prior to melting limits the design space for new SGs. These constraints highlight the need for alternative low-temperature synthesis methods. To address this challenge, our group recently introduced a sustainable and bottom-up approach based on metal–histidine complexes, termed evaporation-induced self-assembly (EISA). This solution-based technique enables the efficient production of various SGs, including single- and multicomponent organic glasses and organic–inorganic hybrids.</p><p >In the EISA process, molecular precursors are first dissolved in a solvent to form a uniform solution. Controlled solvent evaporation─under ambient pressure and moderate temperatures─increases viscosity, impeding the orderly organization of monomers. Simultaneously, polymerization progresses, leading to vitrification and glass formation. This low-energy, equipment-free process eliminates the need for thermal treatment or postprocessing and allows for solution-based recycling, aligning with principles of green chemistry and sustainable materials development.</p><p >Compared with inorganic and metallic glasses, solution-processed SGs offer several key advantages, including low density, high transparency, recyclability, and superior processability. Their properties can be tailored through the incorporation of functional moieties, such as dye molecules or metal ions, enabling tunable photoluminescence. The rigid SG matrix effectively restricts molecular vibrations, resulting in ultralong room-temperature phosphorescence (RTP), while the addition of chiral components can generate circularly polarized luminescence (CPL).</p><p >SGs fabricated via EISA exhibit multifunctionality, making them suitable for a wide range of applications. Their intrinsic ability to self-assemble into varied morphologies is ideal for the fabrication of advanced optical elements. The high viscosity of precursor solutions during evaporation facilitates their use as transparent adhesives. Additionally, their prolonged RTP performance also makes them attractive for anticounterfeiting and information security technologies.</p><p >The continued development of solution-assembled SGs will depend on several critical advances: scalable manufacturing methods, the integration of sustainable bio-based components, enhanced mechanical durability and flexibility, and the expansion of functional building block libraries. These innovations are expected to broaden the utility and performance of SGs across a wide range of fields. With ongoing progress, solution-processed SGs are poised to drive the next generation of functional glasses in energy, electronics, displays, and beyond.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"58 19\",\"pages\":\"3010–3020\"},\"PeriodicalIF\":17.7000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.accounts.5c00425\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.5c00425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Glass is a vital material across diverse fields including photovoltaics, construction, medicine, telecommunications, and display technologies. Beyond conventional inorganic, metallic, and polymeric glasses, recent developments have introduced new families, such as supramolecular glasses (SGs), which exhibit greater structural diversity, molecular tunability, and functional versatility. Formed through noncovalent interactions, SGs allow for the incorporation of a wide range of molecular components and architectures.
However, SG fabrication remains largely dependent on melt-quenching, a method that demands high temperatures, costly equipment, and complex procedures. Additionally, thermal decomposition of many components prior to melting limits the design space for new SGs. These constraints highlight the need for alternative low-temperature synthesis methods. To address this challenge, our group recently introduced a sustainable and bottom-up approach based on metal–histidine complexes, termed evaporation-induced self-assembly (EISA). This solution-based technique enables the efficient production of various SGs, including single- and multicomponent organic glasses and organic–inorganic hybrids.
In the EISA process, molecular precursors are first dissolved in a solvent to form a uniform solution. Controlled solvent evaporation─under ambient pressure and moderate temperatures─increases viscosity, impeding the orderly organization of monomers. Simultaneously, polymerization progresses, leading to vitrification and glass formation. This low-energy, equipment-free process eliminates the need for thermal treatment or postprocessing and allows for solution-based recycling, aligning with principles of green chemistry and sustainable materials development.
Compared with inorganic and metallic glasses, solution-processed SGs offer several key advantages, including low density, high transparency, recyclability, and superior processability. Their properties can be tailored through the incorporation of functional moieties, such as dye molecules or metal ions, enabling tunable photoluminescence. The rigid SG matrix effectively restricts molecular vibrations, resulting in ultralong room-temperature phosphorescence (RTP), while the addition of chiral components can generate circularly polarized luminescence (CPL).
SGs fabricated via EISA exhibit multifunctionality, making them suitable for a wide range of applications. Their intrinsic ability to self-assemble into varied morphologies is ideal for the fabrication of advanced optical elements. The high viscosity of precursor solutions during evaporation facilitates their use as transparent adhesives. Additionally, their prolonged RTP performance also makes them attractive for anticounterfeiting and information security technologies.
The continued development of solution-assembled SGs will depend on several critical advances: scalable manufacturing methods, the integration of sustainable bio-based components, enhanced mechanical durability and flexibility, and the expansion of functional building block libraries. These innovations are expected to broaden the utility and performance of SGs across a wide range of fields. With ongoing progress, solution-processed SGs are poised to drive the next generation of functional glasses in energy, electronics, displays, and beyond.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.