探索通过磷脂膜进行被动大分子易位的极限。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ekaterina Kostyurina, , , Ralf Biehl, , , Margarita Kruteva, , , Alexandros Koutsioubas, , , Henrich Frielinghaus, , , Nageshwar Rao Yepuri, , , Stephan Förster, , and , Jürgen Allgaier*, 
{"title":"探索通过磷脂膜进行被动大分子易位的极限。","authors":"Ekaterina Kostyurina,&nbsp;, ,&nbsp;Ralf Biehl,&nbsp;, ,&nbsp;Margarita Kruteva,&nbsp;, ,&nbsp;Alexandros Koutsioubas,&nbsp;, ,&nbsp;Henrich Frielinghaus,&nbsp;, ,&nbsp;Nageshwar Rao Yepuri,&nbsp;, ,&nbsp;Stephan Förster,&nbsp;, and ,&nbsp;Jürgen Allgaier*,&nbsp;","doi":"10.1021/acs.biomac.5c01234","DOIUrl":null,"url":null,"abstract":"<p >Transportation of active macromolecules through cell membranes is an essential biological process. However, for hydrophilic macromolecules, the hydrophobic interior of lipid bilayers suppresses the passive translocation, and there are only few cases reported. We use alternating amphiphilic polymers (AAPs) in which the sizes of the hydrophilic and hydrophobic units can be varied over a broad range, keeping the polymers water-soluble. For small units, the macromolecules show a homopolymer-like character. Pulse field gradient NMR and neutron reflectivity measurements show that the chains have a high solubility in the membrane hydrophobic interior that allows the chains to passively translocate. Increasing the length of the hydrophilic units leads to more polar AAPs with low membrane solubility and a reduced translocation speed. If hydrophilic and hydrophobic moieties are increased in size, the AAPs have a strong amphiphilic character and adsorb to lipid membranes only with their hydrophobic units, have a high membrane concentration, and have an overall fast translocation kinetics.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 10","pages":"6917–6926"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.biomac.5c01234","citationCount":"0","resultStr":"{\"title\":\"Exploring the Limits of Passive Macromolecular Translocation through Phospholipid Membranes\",\"authors\":\"Ekaterina Kostyurina,&nbsp;, ,&nbsp;Ralf Biehl,&nbsp;, ,&nbsp;Margarita Kruteva,&nbsp;, ,&nbsp;Alexandros Koutsioubas,&nbsp;, ,&nbsp;Henrich Frielinghaus,&nbsp;, ,&nbsp;Nageshwar Rao Yepuri,&nbsp;, ,&nbsp;Stephan Förster,&nbsp;, and ,&nbsp;Jürgen Allgaier*,&nbsp;\",\"doi\":\"10.1021/acs.biomac.5c01234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transportation of active macromolecules through cell membranes is an essential biological process. However, for hydrophilic macromolecules, the hydrophobic interior of lipid bilayers suppresses the passive translocation, and there are only few cases reported. We use alternating amphiphilic polymers (AAPs) in which the sizes of the hydrophilic and hydrophobic units can be varied over a broad range, keeping the polymers water-soluble. For small units, the macromolecules show a homopolymer-like character. Pulse field gradient NMR and neutron reflectivity measurements show that the chains have a high solubility in the membrane hydrophobic interior that allows the chains to passively translocate. Increasing the length of the hydrophilic units leads to more polar AAPs with low membrane solubility and a reduced translocation speed. If hydrophilic and hydrophobic moieties are increased in size, the AAPs have a strong amphiphilic character and adsorb to lipid membranes only with their hydrophobic units, have a high membrane concentration, and have an overall fast translocation kinetics.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 10\",\"pages\":\"6917–6926\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.biomac.5c01234\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.5c01234\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.5c01234","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

活性大分子通过细胞膜的运输是一个重要的生物过程。而对于亲水大分子,脂质双分子层的疏水内部抑制了被动易位,报道较少。我们使用交替的两亲性聚合物(AAPs),其中亲疏水单元的大小可以在很宽的范围内变化,保持聚合物的水溶性。对于小单位,大分子表现出类似均聚物的特征。脉冲场梯度核磁共振和中子反射率测量表明,链在膜疏水内部具有高溶解度,允许链被动移位。增加亲水单元的长度会导致更多的极性aap,膜溶解度低,转运速度减慢。如果亲疏水部分增大,则AAPs具有较强的两亲性,仅通过疏水单元吸附在脂质膜上,具有较高的膜浓度,总体上具有较快的易位动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Limits of Passive Macromolecular Translocation through Phospholipid Membranes

Transportation of active macromolecules through cell membranes is an essential biological process. However, for hydrophilic macromolecules, the hydrophobic interior of lipid bilayers suppresses the passive translocation, and there are only few cases reported. We use alternating amphiphilic polymers (AAPs) in which the sizes of the hydrophilic and hydrophobic units can be varied over a broad range, keeping the polymers water-soluble. For small units, the macromolecules show a homopolymer-like character. Pulse field gradient NMR and neutron reflectivity measurements show that the chains have a high solubility in the membrane hydrophobic interior that allows the chains to passively translocate. Increasing the length of the hydrophilic units leads to more polar AAPs with low membrane solubility and a reduced translocation speed. If hydrophilic and hydrophobic moieties are increased in size, the AAPs have a strong amphiphilic character and adsorb to lipid membranes only with their hydrophobic units, have a high membrane concentration, and have an overall fast translocation kinetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信