Kerem Tok, Hichem Moulahoum, F Baris Barlas, Oguzhan Karakurt, Nursima Ucar, Didem Aksu, Dilara Yeniterzi, Ozge Ozufuklar, Dilara Gürsoy, Saniye Soylemez, Emine Guler Celik, Ali Cirpan, Tevfik Ilker Akcam, Kutsal Turhan, Figen Zihnioglu, Suna Timur
{"title":"功能性生物成像探针:荧光共轭聚合物纳米颗粒与胸膜液衍生肽和蛋白质耦合。","authors":"Kerem Tok, Hichem Moulahoum, F Baris Barlas, Oguzhan Karakurt, Nursima Ucar, Didem Aksu, Dilara Yeniterzi, Ozge Ozufuklar, Dilara Gürsoy, Saniye Soylemez, Emine Guler Celik, Ali Cirpan, Tevfik Ilker Akcam, Kutsal Turhan, Figen Zihnioglu, Suna Timur","doi":"10.1021/acs.bioconjchem.5c00321","DOIUrl":null,"url":null,"abstract":"<p><p>Thiol-functionalized conjugated polymers offer a versatile platform for designing fluorescent nanomaterials with biomedical relevance. In this study, a thiol modified conjugated polymer composed of benzoxadiazole (BO) and carbazole (POxC-SH) was synthesized, then converted into fluorescent nanoparticles (POxC-SH NPs) via a reprecipitation method. The nanoparticles exhibited strong photoluminescence, colloidal stability, and monodispersity in media. Surface thiol groups enabled conjugation with peptide and protein components isolated from the pleural fluid of lung adenocarcinoma patients using SMCC cross-linking. The resulting bioconjugated nanoprobe was characterized by spectroscopic methods, FTIR, XPS, and Mass spectrometry. Cellular studies in A549 and BEAS-2B cell lines demonstrated efficient internalization and low toxicity of both native and conjugated nanoparticles. This work presents a proof of concept for using thiol-modified conjugated polymer nanoparticles as intrinsically fluorescent, patient-adaptable imaging agents, bridging conjugated polymer chemistry with targeted biomedical applications.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Bioimaging Probes: Fluorescent Conjugated Polymer Nanoparticles Coupled with Pleural Fluid-Derived Peptides and Proteins.\",\"authors\":\"Kerem Tok, Hichem Moulahoum, F Baris Barlas, Oguzhan Karakurt, Nursima Ucar, Didem Aksu, Dilara Yeniterzi, Ozge Ozufuklar, Dilara Gürsoy, Saniye Soylemez, Emine Guler Celik, Ali Cirpan, Tevfik Ilker Akcam, Kutsal Turhan, Figen Zihnioglu, Suna Timur\",\"doi\":\"10.1021/acs.bioconjchem.5c00321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thiol-functionalized conjugated polymers offer a versatile platform for designing fluorescent nanomaterials with biomedical relevance. In this study, a thiol modified conjugated polymer composed of benzoxadiazole (BO) and carbazole (POxC-SH) was synthesized, then converted into fluorescent nanoparticles (POxC-SH NPs) via a reprecipitation method. The nanoparticles exhibited strong photoluminescence, colloidal stability, and monodispersity in media. Surface thiol groups enabled conjugation with peptide and protein components isolated from the pleural fluid of lung adenocarcinoma patients using SMCC cross-linking. The resulting bioconjugated nanoprobe was characterized by spectroscopic methods, FTIR, XPS, and Mass spectrometry. Cellular studies in A549 and BEAS-2B cell lines demonstrated efficient internalization and low toxicity of both native and conjugated nanoparticles. This work presents a proof of concept for using thiol-modified conjugated polymer nanoparticles as intrinsically fluorescent, patient-adaptable imaging agents, bridging conjugated polymer chemistry with targeted biomedical applications.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.5c00321\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00321","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Functional Bioimaging Probes: Fluorescent Conjugated Polymer Nanoparticles Coupled with Pleural Fluid-Derived Peptides and Proteins.
Thiol-functionalized conjugated polymers offer a versatile platform for designing fluorescent nanomaterials with biomedical relevance. In this study, a thiol modified conjugated polymer composed of benzoxadiazole (BO) and carbazole (POxC-SH) was synthesized, then converted into fluorescent nanoparticles (POxC-SH NPs) via a reprecipitation method. The nanoparticles exhibited strong photoluminescence, colloidal stability, and monodispersity in media. Surface thiol groups enabled conjugation with peptide and protein components isolated from the pleural fluid of lung adenocarcinoma patients using SMCC cross-linking. The resulting bioconjugated nanoprobe was characterized by spectroscopic methods, FTIR, XPS, and Mass spectrometry. Cellular studies in A549 and BEAS-2B cell lines demonstrated efficient internalization and low toxicity of both native and conjugated nanoparticles. This work presents a proof of concept for using thiol-modified conjugated polymer nanoparticles as intrinsically fluorescent, patient-adaptable imaging agents, bridging conjugated polymer chemistry with targeted biomedical applications.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.