利用pd掺杂介孔γ-Al2O3/SnO2的协同效应检测多种氟利昂制冷剂气体

IF 3.5
Jiahong Wen, Yaxin Wang, Ruoning Chu, Jinhai Li, Ze Chen, Yongjun Zhang, Xiaoyu Zhao, Qi-Qi Fu
{"title":"利用pd掺杂介孔γ-Al2O3/SnO2的协同效应检测多种氟利昂制冷剂气体","authors":"Jiahong Wen,&nbsp;Yaxin Wang,&nbsp;Ruoning Chu,&nbsp;Jinhai Li,&nbsp;Ze Chen,&nbsp;Yongjun Zhang,&nbsp;Xiaoyu Zhao,&nbsp;Qi-Qi Fu","doi":"10.1002/adsr.202500046","DOIUrl":null,"url":null,"abstract":"<p>Freon refrigerants, whose leakage will cause serious safety and environmental issues, have an urgent need of developing leakage detection technologies. Conventional metal oxide semiconductor (MOS) gas sensors exhibit limited efficacy in detecting halogenated Freons due to their chemical inertness and weak charge-transfer interactions. While recent innovations employing mesoporous γ-Al<sub>2</sub>O<sub>3</sub> overlayers have enabled Freon detection via catalytic decomposition sensing mechanism, the achieved sensing performance remains suboptimal. In this work, this issue is addressed by engineering a Pd-doped mesoporous γ-Al<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub> (Pd-γ-Al<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub>) gas sensor. The doped Pd atoms not only accelerate the decomposition of Freon molecules on the catalytic layer but also induce the Schottky-barrier effect in the SnO<sub>2</sub> sensing layer. Benefiting from the synergistic effect, the Pd-γ-Al<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub> gas sensor shows outstanding response, good stability, repeatability, selectivity, and rarely-reported universality in sensing different Freon gases. Notably, a valuable solution is demonstrated in the leakage detection of next-generation refrigerants, Freon R1234yf. The sensing mechanism is deduced by exhaust gas components identification. These results highlight the promising potential for addressing the real-world needs of Freon refrigerant leakage detection technology.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202500046","citationCount":"0","resultStr":"{\"title\":\"Utilizing Synergistic Effect in Pd-Doped Mesoporous γ-Al2O3/SnO2 for Multiple Freon Refrigerant Gases Detection\",\"authors\":\"Jiahong Wen,&nbsp;Yaxin Wang,&nbsp;Ruoning Chu,&nbsp;Jinhai Li,&nbsp;Ze Chen,&nbsp;Yongjun Zhang,&nbsp;Xiaoyu Zhao,&nbsp;Qi-Qi Fu\",\"doi\":\"10.1002/adsr.202500046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Freon refrigerants, whose leakage will cause serious safety and environmental issues, have an urgent need of developing leakage detection technologies. Conventional metal oxide semiconductor (MOS) gas sensors exhibit limited efficacy in detecting halogenated Freons due to their chemical inertness and weak charge-transfer interactions. While recent innovations employing mesoporous γ-Al<sub>2</sub>O<sub>3</sub> overlayers have enabled Freon detection via catalytic decomposition sensing mechanism, the achieved sensing performance remains suboptimal. In this work, this issue is addressed by engineering a Pd-doped mesoporous γ-Al<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub> (Pd-γ-Al<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub>) gas sensor. The doped Pd atoms not only accelerate the decomposition of Freon molecules on the catalytic layer but also induce the Schottky-barrier effect in the SnO<sub>2</sub> sensing layer. Benefiting from the synergistic effect, the Pd-γ-Al<sub>2</sub>O<sub>3</sub>/SnO<sub>2</sub> gas sensor shows outstanding response, good stability, repeatability, selectivity, and rarely-reported universality in sensing different Freon gases. Notably, a valuable solution is demonstrated in the leakage detection of next-generation refrigerants, Freon R1234yf. The sensing mechanism is deduced by exhaust gas components identification. These results highlight the promising potential for addressing the real-world needs of Freon refrigerant leakage detection technology.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202500046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsr.202500046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsr.202500046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氟利昂制冷剂泄漏会造成严重的安全和环境问题,迫切需要开发泄漏检测技术。传统的金属氧化物半导体(MOS)气体传感器由于其化学惰性和弱电荷转移相互作用,在检测卤化氟利昂方面的效率有限。虽然最近采用介孔γ-Al2O3覆盖层的创新技术通过催化分解传感机制实现了氟里昂检测,但所实现的传感性能仍然不是最佳的。在这项工作中,通过设计Pd掺杂的介孔γ-Al2O3/SnO2 (Pd-γ-Al2O3/SnO2)气体传感器来解决这个问题。掺杂Pd原子不仅加速了催化层上氟里昂分子的分解,而且在SnO2传感层中诱发了肖特基势垒效应。得益于协同效应,Pd-γ-Al2O3/SnO2气体传感器在传感不同氟利昂气体方面表现出优异的响应性、良好的稳定性、重复性、选择性和罕见的通用性。值得注意的是,在下一代制冷剂氟利昂R1234yf的泄漏检测中展示了一个有价值的解决方案。通过对废气成分的辨识,推导了感应机理。这些结果突出了解决氟利昂制冷剂泄漏检测技术的实际需求的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Utilizing Synergistic Effect in Pd-Doped Mesoporous γ-Al2O3/SnO2 for Multiple Freon Refrigerant Gases Detection

Utilizing Synergistic Effect in Pd-Doped Mesoporous γ-Al2O3/SnO2 for Multiple Freon Refrigerant Gases Detection

Utilizing Synergistic Effect in Pd-Doped Mesoporous γ-Al2O3/SnO2 for Multiple Freon Refrigerant Gases Detection

Utilizing Synergistic Effect in Pd-Doped Mesoporous γ-Al2O3/SnO2 for Multiple Freon Refrigerant Gases Detection

Freon refrigerants, whose leakage will cause serious safety and environmental issues, have an urgent need of developing leakage detection technologies. Conventional metal oxide semiconductor (MOS) gas sensors exhibit limited efficacy in detecting halogenated Freons due to their chemical inertness and weak charge-transfer interactions. While recent innovations employing mesoporous γ-Al2O3 overlayers have enabled Freon detection via catalytic decomposition sensing mechanism, the achieved sensing performance remains suboptimal. In this work, this issue is addressed by engineering a Pd-doped mesoporous γ-Al2O3/SnO2 (Pd-γ-Al2O3/SnO2) gas sensor. The doped Pd atoms not only accelerate the decomposition of Freon molecules on the catalytic layer but also induce the Schottky-barrier effect in the SnO2 sensing layer. Benefiting from the synergistic effect, the Pd-γ-Al2O3/SnO2 gas sensor shows outstanding response, good stability, repeatability, selectivity, and rarely-reported universality in sensing different Freon gases. Notably, a valuable solution is demonstrated in the leakage detection of next-generation refrigerants, Freon R1234yf. The sensing mechanism is deduced by exhaust gas components identification. These results highlight the promising potential for addressing the real-world needs of Freon refrigerant leakage detection technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信