基于钯纳米颗粒电容式传感器的高灵敏度室温氢检测

IF 3.5
Siyi Qiu, Jie Zou, Keda Bao, Chao Yang, Changkun Zhu, Xiaoqing Jiang, Qinghui Jin, Pengcheng Xu, Ming Li, Jiawen Jian, Shihao Wei, Han Jin
{"title":"基于钯纳米颗粒电容式传感器的高灵敏度室温氢检测","authors":"Siyi Qiu,&nbsp;Jie Zou,&nbsp;Keda Bao,&nbsp;Chao Yang,&nbsp;Changkun Zhu,&nbsp;Xiaoqing Jiang,&nbsp;Qinghui Jin,&nbsp;Pengcheng Xu,&nbsp;Ming Li,&nbsp;Jiawen Jian,&nbsp;Shihao Wei,&nbsp;Han Jin","doi":"10.1002/adsr.202500047","DOIUrl":null,"url":null,"abstract":"<p>Palladium nanoparticle (Pd NP)-based resistive-type hydrogen (H<sub>2</sub>) sensors are susceptible to interference from oxygen when detecting H<sub>2</sub>. In contrast, capacitive-type sensors emerge as promising candidates for addressing this issue, owing to their unique operating principle. Herein, a capacitive-type H<sub>2</sub> sensor is developed to verify the conception, using Pd NPs as the sensing material and integrating them into a novel 3D interdigital electrode (IDE) structure fabricated on a silicon wafer via microelectromechanical systems (MEMS) technology. Comprehensive characterization of the Pd NPs within the 3D IDEs reveals a strong correlation between sensitivity and Pd NP content, with peak sensitivity (61.94) attained at 20 000 ppm H<sub>2</sub> for ≈0.7 mg of Pd NPs. The sensor demonstrated negligible interference from CH<sub>4</sub>, CO<sub>2</sub>, and CO, underscoring its exceptional selectivity for H<sub>2</sub>. Particularly, variation of oxygen concentration in the background gas shows a minor impact on the sensing performance of the developed capacitive H<sub>2</sub> sensor. Additionally, density functional theory (DFT) calculations provide insight into the volumetric expansion of Pd at different H/Pd ratios, showing a maximum expansion of 13.7% at an H/Pd ratio of 1. This work highlights the potential of capacitive-type sensors for high-performance tracking H<sub>2</sub>, paving the way for advanced applications in H<sub>2</sub> monitoring.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202500047","citationCount":"0","resultStr":"{\"title\":\"Highly Sensitive Room-Temperature Hydrogen Detection with Palladium Nanoparticle-Based Capacitive-Type Sensors\",\"authors\":\"Siyi Qiu,&nbsp;Jie Zou,&nbsp;Keda Bao,&nbsp;Chao Yang,&nbsp;Changkun Zhu,&nbsp;Xiaoqing Jiang,&nbsp;Qinghui Jin,&nbsp;Pengcheng Xu,&nbsp;Ming Li,&nbsp;Jiawen Jian,&nbsp;Shihao Wei,&nbsp;Han Jin\",\"doi\":\"10.1002/adsr.202500047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Palladium nanoparticle (Pd NP)-based resistive-type hydrogen (H<sub>2</sub>) sensors are susceptible to interference from oxygen when detecting H<sub>2</sub>. In contrast, capacitive-type sensors emerge as promising candidates for addressing this issue, owing to their unique operating principle. Herein, a capacitive-type H<sub>2</sub> sensor is developed to verify the conception, using Pd NPs as the sensing material and integrating them into a novel 3D interdigital electrode (IDE) structure fabricated on a silicon wafer via microelectromechanical systems (MEMS) technology. Comprehensive characterization of the Pd NPs within the 3D IDEs reveals a strong correlation between sensitivity and Pd NP content, with peak sensitivity (61.94) attained at 20 000 ppm H<sub>2</sub> for ≈0.7 mg of Pd NPs. The sensor demonstrated negligible interference from CH<sub>4</sub>, CO<sub>2</sub>, and CO, underscoring its exceptional selectivity for H<sub>2</sub>. Particularly, variation of oxygen concentration in the background gas shows a minor impact on the sensing performance of the developed capacitive H<sub>2</sub> sensor. Additionally, density functional theory (DFT) calculations provide insight into the volumetric expansion of Pd at different H/Pd ratios, showing a maximum expansion of 13.7% at an H/Pd ratio of 1. This work highlights the potential of capacitive-type sensors for high-performance tracking H<sub>2</sub>, paving the way for advanced applications in H<sub>2</sub> monitoring.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"4 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202500047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsr.202500047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsr.202500047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于钯纳米颗粒(Pd NP)的电阻式氢气传感器在检测氢气时容易受到氧气的干扰。相比之下,电容型传感器由于其独特的工作原理而成为解决这一问题的有希望的候选者。在此,开发了一种电容式氢气传感器来验证这一概念,使用Pd NPs作为传感材料,并通过微机电系统(MEMS)技术将其集成到硅晶片上制造的新型3D数字间电极(IDE)结构中。对3D ide中Pd NPs的综合表征表明,灵敏度与Pd NP含量之间存在很强的相关性,在20 000 ppm H2条件下,Pd NPs的峰值灵敏度为61.94。该传感器可以忽略CH4, CO2和CO的干扰,强调其对H2的特殊选择性。特别是,背景气体中氧浓度的变化对电容式氢气传感器的传感性能影响较小。此外,密度泛函理论(DFT)计算可以深入了解不同H/Pd比下Pd的体积膨胀,表明H/Pd比为1时,Pd的最大膨胀率为13.7%。这项工作强调了电容式传感器在高性能跟踪H2方面的潜力,为H2监测的高级应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Sensitive Room-Temperature Hydrogen Detection with Palladium Nanoparticle-Based Capacitive-Type Sensors

Highly Sensitive Room-Temperature Hydrogen Detection with Palladium Nanoparticle-Based Capacitive-Type Sensors

Highly Sensitive Room-Temperature Hydrogen Detection with Palladium Nanoparticle-Based Capacitive-Type Sensors

Highly Sensitive Room-Temperature Hydrogen Detection with Palladium Nanoparticle-Based Capacitive-Type Sensors

Palladium nanoparticle (Pd NP)-based resistive-type hydrogen (H2) sensors are susceptible to interference from oxygen when detecting H2. In contrast, capacitive-type sensors emerge as promising candidates for addressing this issue, owing to their unique operating principle. Herein, a capacitive-type H2 sensor is developed to verify the conception, using Pd NPs as the sensing material and integrating them into a novel 3D interdigital electrode (IDE) structure fabricated on a silicon wafer via microelectromechanical systems (MEMS) technology. Comprehensive characterization of the Pd NPs within the 3D IDEs reveals a strong correlation between sensitivity and Pd NP content, with peak sensitivity (61.94) attained at 20 000 ppm H2 for ≈0.7 mg of Pd NPs. The sensor demonstrated negligible interference from CH4, CO2, and CO, underscoring its exceptional selectivity for H2. Particularly, variation of oxygen concentration in the background gas shows a minor impact on the sensing performance of the developed capacitive H2 sensor. Additionally, density functional theory (DFT) calculations provide insight into the volumetric expansion of Pd at different H/Pd ratios, showing a maximum expansion of 13.7% at an H/Pd ratio of 1. This work highlights the potential of capacitive-type sensors for high-performance tracking H2, paving the way for advanced applications in H2 monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信