蜂蜡基复合相变材料中氮化硼与膨胀石墨协同作用的热性能及形状稳定性评价

Energy Storage Pub Date : 2025-09-12 DOI:10.1002/est2.70255
Anas Islam, A. K. Pandey, Kosheela Devi Poo Palam, Yasir Ali Bhutto, R. Saidur
{"title":"蜂蜡基复合相变材料中氮化硼与膨胀石墨协同作用的热性能及形状稳定性评价","authors":"Anas Islam,&nbsp;A. K. Pandey,&nbsp;Kosheela Devi Poo Palam,&nbsp;Yasir Ali Bhutto,&nbsp;R. Saidur","doi":"10.1002/est2.70255","DOIUrl":null,"url":null,"abstract":"<p>Phase change materials (PCMs) are efficient thermal energy storage materials due to their high energy density and ability to maintain a constant temperature during phase transitions. Nonetheless, the low thermal conductivity and liquid phase leakage of PCMs constrain their efficient heat transfer and widespread adoption. The development of leakage-free composite PCMs with high thermal conductivity remained a challenge. This work presents the first synergistic enhancement of thermal conductivity and shape stability of beeswax PCM with a dual-scale filler system of h-BN nanoparticles and EG microparticles that has not been reported previously in the literature. The composite containing 3 wt.% of h-BN with 10 wt.% of EG exhibited no leakage at 80°C, with a 312% enhancement in thermal conductivity and a 68.5% decrease in light transmittance. Only a minor reduction of ~12% in latent heat was noted in comparison to the base PCM. Further, the composite exhibited comparable performance after 300 thermal cycles.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70255","citationCount":"0","resultStr":"{\"title\":\"Thermal Performance and Shape Stability Evaluation of Boron Nitride and Expanded Graphite Synergy in Beeswax-Based Composite Phase Change Material\",\"authors\":\"Anas Islam,&nbsp;A. K. Pandey,&nbsp;Kosheela Devi Poo Palam,&nbsp;Yasir Ali Bhutto,&nbsp;R. Saidur\",\"doi\":\"10.1002/est2.70255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phase change materials (PCMs) are efficient thermal energy storage materials due to their high energy density and ability to maintain a constant temperature during phase transitions. Nonetheless, the low thermal conductivity and liquid phase leakage of PCMs constrain their efficient heat transfer and widespread adoption. The development of leakage-free composite PCMs with high thermal conductivity remained a challenge. This work presents the first synergistic enhancement of thermal conductivity and shape stability of beeswax PCM with a dual-scale filler system of h-BN nanoparticles and EG microparticles that has not been reported previously in the literature. The composite containing 3 wt.% of h-BN with 10 wt.% of EG exhibited no leakage at 80°C, with a 312% enhancement in thermal conductivity and a 68.5% decrease in light transmittance. Only a minor reduction of ~12% in latent heat was noted in comparison to the base PCM. Further, the composite exhibited comparable performance after 300 thermal cycles.</p>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/est2.70255\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相变材料(PCMs)由于其高能量密度和在相变过程中保持恒温的能力,是一种高效的储热材料。然而,PCMs的低导热系数和液相泄漏限制了其高效传热和广泛应用。开发具有高导热性的无泄漏复合pcm仍然是一个挑战。这项工作提出了蜂蜡PCM的导热性和形状稳定性的第一个协同增强与h-BN纳米颗粒和EG微粒的双尺度填充系统,这在以前的文献中没有报道过。该复合材料含有3wt。%的h-BN与10 wt。80%的EG在80℃下没有泄漏,导热系数提高了312%,透光率降低了68.5%。与基本PCM相比,潜热只减少了约12%。此外,该复合材料在300次热循环后表现出相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal Performance and Shape Stability Evaluation of Boron Nitride and Expanded Graphite Synergy in Beeswax-Based Composite Phase Change Material

Thermal Performance and Shape Stability Evaluation of Boron Nitride and Expanded Graphite Synergy in Beeswax-Based Composite Phase Change Material

Phase change materials (PCMs) are efficient thermal energy storage materials due to their high energy density and ability to maintain a constant temperature during phase transitions. Nonetheless, the low thermal conductivity and liquid phase leakage of PCMs constrain their efficient heat transfer and widespread adoption. The development of leakage-free composite PCMs with high thermal conductivity remained a challenge. This work presents the first synergistic enhancement of thermal conductivity and shape stability of beeswax PCM with a dual-scale filler system of h-BN nanoparticles and EG microparticles that has not been reported previously in the literature. The composite containing 3 wt.% of h-BN with 10 wt.% of EG exhibited no leakage at 80°C, with a 312% enhancement in thermal conductivity and a 68.5% decrease in light transmittance. Only a minor reduction of ~12% in latent heat was noted in comparison to the base PCM. Further, the composite exhibited comparable performance after 300 thermal cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信