基于激光雷达测程的递归样条估计

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Ziyu Cao;William Talbot;Kailai Li
{"title":"基于激光雷达测程的递归样条估计","authors":"Ziyu Cao;William Talbot;Kailai Li","doi":"10.1109/LRA.2025.3604758","DOIUrl":null,"url":null,"abstract":"We present a novel recursive Bayesian estimation framework using B-splines for continuous-time 6-DoF dynamic motion estimation. The state vector consists of a recurrent set of position control points and orientation control point increments, enabling efficient estimation via a modified iterated extended Kalman filter without involving error-state formulations. The resulting recursive spline estimator (RESPLE) is further leveraged to develop a versatile suite of direct LiDAR-based odometry solutions, supporting the integration of one or multiple LiDARs and an IMU. We conduct extensive real-world evaluations using public datasets and our own experiments, covering diverse sensor setups, platforms, and environments. Compared to existing systems, RESPLE achieves comparable or superior estimation accuracy and robustness, while attaining real-time efficiency. Our results and analysis demonstrate RESPLE's strength in handling highly dynamic motions and complex scenes within a lightweight and flexible design, showing strong potential as a universal framework for multi-sensor motion estimation.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 10","pages":"10666-10673"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESPLE: Recursive Spline Estimation for LiDAR-Based Odometry\",\"authors\":\"Ziyu Cao;William Talbot;Kailai Li\",\"doi\":\"10.1109/LRA.2025.3604758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel recursive Bayesian estimation framework using B-splines for continuous-time 6-DoF dynamic motion estimation. The state vector consists of a recurrent set of position control points and orientation control point increments, enabling efficient estimation via a modified iterated extended Kalman filter without involving error-state formulations. The resulting recursive spline estimator (RESPLE) is further leveraged to develop a versatile suite of direct LiDAR-based odometry solutions, supporting the integration of one or multiple LiDARs and an IMU. We conduct extensive real-world evaluations using public datasets and our own experiments, covering diverse sensor setups, platforms, and environments. Compared to existing systems, RESPLE achieves comparable or superior estimation accuracy and robustness, while attaining real-time efficiency. Our results and analysis demonstrate RESPLE's strength in handling highly dynamic motions and complex scenes within a lightweight and flexible design, showing strong potential as a universal framework for multi-sensor motion estimation.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 10\",\"pages\":\"10666-10673\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146608/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11146608/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于b样条的递归贝叶斯估计框架,用于连续六自由度动态运动估计。状态向量由位置控制点和方向控制点增量的循环集组成,可以通过改进的迭代扩展卡尔曼滤波器进行有效估计,而不涉及错误状态公式。由此产生的递归样条估计器(RESPLE)进一步用于开发一套通用的直接基于激光雷达的里程计解决方案,支持将一个或多个激光雷达与IMU集成。我们使用公共数据集和我们自己的实验进行广泛的现实世界评估,涵盖不同的传感器设置,平台和环境。与现有系统相比,RESPLE在达到实时效率的同时,实现了相当或更高的估计精度和鲁棒性。我们的结果和分析证明了RESPLE在处理高动态运动和复杂场景方面的优势,在轻量级和灵活的设计中,显示出作为多传感器运动估计通用框架的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RESPLE: Recursive Spline Estimation for LiDAR-Based Odometry
We present a novel recursive Bayesian estimation framework using B-splines for continuous-time 6-DoF dynamic motion estimation. The state vector consists of a recurrent set of position control points and orientation control point increments, enabling efficient estimation via a modified iterated extended Kalman filter without involving error-state formulations. The resulting recursive spline estimator (RESPLE) is further leveraged to develop a versatile suite of direct LiDAR-based odometry solutions, supporting the integration of one or multiple LiDARs and an IMU. We conduct extensive real-world evaluations using public datasets and our own experiments, covering diverse sensor setups, platforms, and environments. Compared to existing systems, RESPLE achieves comparable or superior estimation accuracy and robustness, while attaining real-time efficiency. Our results and analysis demonstrate RESPLE's strength in handling highly dynamic motions and complex scenes within a lightweight and flexible design, showing strong potential as a universal framework for multi-sensor motion estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信