Sourav Raxit;Abdullah Al Redwan Newaz;Paulo Padrao;Jose Fuentes;Leonardo Bobadilla
{"title":"BOW:基于窗口的贝叶斯优化在复杂环境中的运动规划","authors":"Sourav Raxit;Abdullah Al Redwan Newaz;Paulo Padrao;Jose Fuentes;Leonardo Bobadilla","doi":"10.1109/LRA.2025.3604738","DOIUrl":null,"url":null,"abstract":"This letter introduces the BOW Planner, a scalable motion planning algorithm designed to navigate robots through complex environments using constrained Bayesian optimization (CBO). Unlike traditional methods, which often struggle with kinodynamic constraints such as velocity and acceleration limits, the BOW Planner excels by concentrating on a planning window of reachable velocities and employing CBO to sample control inputs efficiently. This approach enables the planner to manage high-dimensional objective functions and stringent safety constraints with minimal sampling, ensuring rapid and secure trajectory generation. Theoretical analysis confirms the algorithm's asymptotic convergence to near-optimal solutions, while extensive evaluations in cluttered and constrained settings reveal substantial improvements in computation times, trajectory lengths, and solution times compared to existing techniques. Successfully deployed across various real-world robotic systems, the BOW Planner demonstrates its practical significance through exceptional sample efficiency, safety-aware optimization, and rapid planning capabilities, making it a valuable tool for advancing robotic applications.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 10","pages":"10714-10721"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BOW: Bayesian Optimization Over Windows for Motion Planning in Complex Environments\",\"authors\":\"Sourav Raxit;Abdullah Al Redwan Newaz;Paulo Padrao;Jose Fuentes;Leonardo Bobadilla\",\"doi\":\"10.1109/LRA.2025.3604738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces the BOW Planner, a scalable motion planning algorithm designed to navigate robots through complex environments using constrained Bayesian optimization (CBO). Unlike traditional methods, which often struggle with kinodynamic constraints such as velocity and acceleration limits, the BOW Planner excels by concentrating on a planning window of reachable velocities and employing CBO to sample control inputs efficiently. This approach enables the planner to manage high-dimensional objective functions and stringent safety constraints with minimal sampling, ensuring rapid and secure trajectory generation. Theoretical analysis confirms the algorithm's asymptotic convergence to near-optimal solutions, while extensive evaluations in cluttered and constrained settings reveal substantial improvements in computation times, trajectory lengths, and solution times compared to existing techniques. Successfully deployed across various real-world robotic systems, the BOW Planner demonstrates its practical significance through exceptional sample efficiency, safety-aware optimization, and rapid planning capabilities, making it a valuable tool for advancing robotic applications.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 10\",\"pages\":\"10714-10721\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11146459/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11146459/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
BOW: Bayesian Optimization Over Windows for Motion Planning in Complex Environments
This letter introduces the BOW Planner, a scalable motion planning algorithm designed to navigate robots through complex environments using constrained Bayesian optimization (CBO). Unlike traditional methods, which often struggle with kinodynamic constraints such as velocity and acceleration limits, the BOW Planner excels by concentrating on a planning window of reachable velocities and employing CBO to sample control inputs efficiently. This approach enables the planner to manage high-dimensional objective functions and stringent safety constraints with minimal sampling, ensuring rapid and secure trajectory generation. Theoretical analysis confirms the algorithm's asymptotic convergence to near-optimal solutions, while extensive evaluations in cluttered and constrained settings reveal substantial improvements in computation times, trajectory lengths, and solution times compared to existing techniques. Successfully deployed across various real-world robotic systems, the BOW Planner demonstrates its practical significance through exceptional sample efficiency, safety-aware optimization, and rapid planning capabilities, making it a valuable tool for advancing robotic applications.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.