星型着色和受限星型着色的硬度过渡

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shalu M.A. , Cyriac Antony
{"title":"星型着色和受限星型着色的硬度过渡","authors":"Shalu M.A. ,&nbsp;Cyriac Antony","doi":"10.1016/j.dam.2025.08.056","DOIUrl":null,"url":null,"abstract":"<div><div>We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring, as the name implies. For <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, a <span><math><mi>k</mi></math></span>-colouring of a graph <span><math><mi>G</mi></math></span> is a function <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> for every edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>. A <span><math><mi>k</mi></math></span>-colouring of <span><math><mi>G</mi></math></span> is called a <span><math><mi>k</mi></math></span>-star colouring of <span><math><mi>G</mi></math></span> if there is no path <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>x</mi></mrow></math></span> in <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. A <span><math><mi>k</mi></math></span>-colouring of <span><math><mi>G</mi></math></span> is called a <span><math><mi>k</mi></math></span>-rs colouring of <span><math><mi>G</mi></math></span> if there is no path <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi></mrow></math></span> in <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>&gt;</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span>. For <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, the problem <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> takes a graph <span><math><mi>G</mi></math></span> as input and asks whether <span><math><mi>G</mi></math></span> admits a <span><math><mi>k</mi></math></span>-star colouring. The problem <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of <span><math><mi>k</mi></math></span>-star colouring and <span><math><mi>k</mi></math></span>-rs colouring with respect to the maximum degree for all <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. For <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, let us denote the least integer <span><math><mi>d</mi></math></span> such that <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> (resp. <span><math><mi>k</mi></math></span>-RS <span>Colourability</span>) is NP-complete for graphs of maximum degree <span><math><mi>d</mi></math></span> by <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (resp. <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span>). We prove that for <span><math><mrow><mi>k</mi><mo>=</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>7</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> is NP-complete for graphs of maximum degree <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> (i.e., <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>). We also show that 4-RS <span>Colourability</span> is NP-complete for planar 3-regular graphs of girth 5 and <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is NP-complete for triangle-free graphs of maximum degree <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> (i.e., <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>). Using these results, we prove the following: (i) for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>d</mi><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> is NP-complete for <span><math><mi>d</mi></math></span>-regular graphs if and only if <span><math><mrow><mi>d</mi><mo>≥</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></mrow></math></span>; and (ii) for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is NP-complete for <span><math><mi>d</mi></math></span>-regular graphs if and only if <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>d</mi><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. It is not known whether result (ii) has a star colouring analogue.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 1-33"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardness transitions of star colouring and restricted star colouring\",\"authors\":\"Shalu M.A. ,&nbsp;Cyriac Antony\",\"doi\":\"10.1016/j.dam.2025.08.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring, as the name implies. For <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, a <span><math><mi>k</mi></math></span>-colouring of a graph <span><math><mi>G</mi></math></span> is a function <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> for every edge <span><math><mrow><mi>u</mi><mi>v</mi></mrow></math></span> of <span><math><mi>G</mi></math></span>. A <span><math><mi>k</mi></math></span>-colouring of <span><math><mi>G</mi></math></span> is called a <span><math><mi>k</mi></math></span>-star colouring of <span><math><mi>G</mi></math></span> if there is no path <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>x</mi></mrow></math></span> in <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>. A <span><math><mi>k</mi></math></span>-colouring of <span><math><mi>G</mi></math></span> is called a <span><math><mi>k</mi></math></span>-rs colouring of <span><math><mi>G</mi></math></span> if there is no path <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi></mrow></math></span> in <span><math><mi>G</mi></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>&gt;</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow></mrow></math></span>. For <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, the problem <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> takes a graph <span><math><mi>G</mi></math></span> as input and asks whether <span><math><mi>G</mi></math></span> admits a <span><math><mi>k</mi></math></span>-star colouring. The problem <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of <span><math><mi>k</mi></math></span>-star colouring and <span><math><mi>k</mi></math></span>-rs colouring with respect to the maximum degree for all <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>. For <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, let us denote the least integer <span><math><mi>d</mi></math></span> such that <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> (resp. <span><math><mi>k</mi></math></span>-RS <span>Colourability</span>) is NP-complete for graphs of maximum degree <span><math><mi>d</mi></math></span> by <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (resp. <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></math></span>). We prove that for <span><math><mrow><mi>k</mi><mo>=</mo><mn>5</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>7</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> is NP-complete for graphs of maximum degree <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> (i.e., <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>). We also show that 4-RS <span>Colourability</span> is NP-complete for planar 3-regular graphs of girth 5 and <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is NP-complete for triangle-free graphs of maximum degree <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> (i.e., <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>). Using these results, we prove the following: (i) for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>d</mi><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-<span>Star Colourability</span> is NP-complete for <span><math><mi>d</mi></math></span>-regular graphs if and only if <span><math><mrow><mi>d</mi><mo>≥</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup></mrow></math></span>; and (ii) for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mi>k</mi></math></span>-RS <span>Colourability</span> is NP-complete for <span><math><mi>d</mi></math></span>-regular graphs if and only if <span><math><mrow><msubsup><mrow><mi>L</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></msubsup><mo>≤</mo><mi>d</mi><mo>≤</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span>. It is not known whether result (ii) has a star colouring analogue.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"380 \",\"pages\":\"Pages 1-33\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25005050\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25005050","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了图着色问题星型着色和受限星型着色的复杂度随图的最大程度的变化规律。限制性星形着色(简称rs着色)顾名思义是星形着色的一种变体。对于k∈N,图G的k着色是一个函数f:V(G)→Zk,使得对于G的每条边uv, f(u)≠f(V)。如果G中不存在路径u, V,w,x,且f(u)=f(w)且f(V)=f(x),则G的k着色称为G的k星着色。如果G中不存在路径u,v,w且f(v)>f(u)=f(w),则G的k-着色称为G的k-rs着色。对于k∈N, k-star colorability问题以图G作为输入,询问G是否允许k-star着色。问题k-RS着色性的定义类似。最近,Brause等人(Electron。j .梳子。, 2022)研究了3星着色相对于图直径的复杂性。研究了k≥3时k-star着色和k-rs着色的最大度复杂度。对于k≥3,让我们表示最小整数d,使得k- star的可着色性(p。对于最大度数为l (k)的图,k- rs显色性是np完全的。Lrs (k))。证明了当k=5和k≥7时,对于最大度k−1的图(即Ls(k)≤k−1),k- star可色性是np完全的。我们还证明了对于周长为5的平面3-正则图,4-RS可色性是np完全的,对于k≥5(即Lrs(k)≤k−1)的最大度为k−1的无三角形图,k- rs可色性是np完全的。利用这些结果,我们证明了:(i)当k≥4且d≤k−1时,d正则图的k星可色性是np完全的当且仅当d≥Ls(k);(ii)当k≥4时,当且仅当Lrs(k)≤d≤k−1,d正则图的k- rs可色性np完全。尚不清楚结果(ii)是否有类似的星型着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardness transitions of star colouring and restricted star colouring
We study how the complexity of the graph colouring problems star colouring and restricted star colouring vary with the maximum degree of the graph. Restricted star colouring (in short, rs colouring) is a variant of star colouring, as the name implies. For kN, a k-colouring of a graph G is a function f:V(G)Zk such that f(u)f(v) for every edge uv of G. A k-colouring of G is called a k-star colouring of G if there is no path u,v,w,x in G with f(u)=f(w) and f(v)=f(x). A k-colouring of G is called a k-rs colouring of G if there is no path u,v,w in G with f(v)>f(u)=f(w). For kN, the problem k-Star Colourability takes a graph G as input and asks whether G admits a k-star colouring. The problem k-RS Colourability is defined similarly. Recently, Brause et al. (Electron. J. Comb., 2022) investigated the complexity of 3-star colouring with respect to the graph diameter. We study the complexity of k-star colouring and k-rs colouring with respect to the maximum degree for all k3. For k3, let us denote the least integer d such that k-Star Colourability (resp. k-RS Colourability) is NP-complete for graphs of maximum degree d by Ls(k) (resp. Lrs(k)). We prove that for k=5 and k7, k-Star Colourability is NP-complete for graphs of maximum degree k1 (i.e., Ls(k)k1). We also show that 4-RS Colourability is NP-complete for planar 3-regular graphs of girth 5 and k-RS Colourability is NP-complete for triangle-free graphs of maximum degree k1 for k5 (i.e., Lrs(k)k1). Using these results, we prove the following: (i) for k4 and dk1, k-Star Colourability is NP-complete for d-regular graphs if and only if dLs(k); and (ii) for k4, k-RS Colourability is NP-complete for d-regular graphs if and only if Lrs(k)dk1. It is not known whether result (ii) has a star colouring analogue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信