多材料激光粉末床熔合增材制造铜基和镍基合金双峰层状异质结构

IF 5.4 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Liming Yan , Bo Li , Jianrui Zhang , Fuzhen Xuan
{"title":"多材料激光粉末床熔合增材制造铜基和镍基合金双峰层状异质结构","authors":"Liming Yan ,&nbsp;Bo Li ,&nbsp;Jianrui Zhang ,&nbsp;Fuzhen Xuan","doi":"10.1016/j.cirpj.2025.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>A bimodal laminate heterostructure consisting of alternating copper-base (CuCrZr) and nickel-base (Hastelloy X) alloy layers was carefully fabricated via multi-material laser powder bed fusion (MM-LPBF) additive manufacturing approach, employing a custom-designed multi-powder delivery device system and proprietary process-control software. The heterostructure shows a hierarchical architecture with periodically alternating coarse-grained (predominantly Hastelloy X) and fine-grained (primarily CuCrZr) layers, interconnected by transition zones containing mixed grain morphologies. The heterostructural material demonstrates exceptional mechanical performance under building-direction loading, achieving a yield strength of 674.2 MPa, ultimate tensile strength of 756.4 MPa (∼92 % of monolithic LPBF-processed Hastelloy X), and elongation of 19.9 %. Crystal plasticity simulations elucidate deformation coordination and strength-ductility synergy mechanisms, while microstructural characterization confirms the bimodal grain structure originates from the LPBF-laser-induced melt pool dynamics and heterogeneous nucleation during the rapid solidification. This study establishes MM-LPBF as a viable approach for manufacturing high-performance, architecturally graded multi-material systems.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":"63 ","pages":"Pages 58-70"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-material laser powder bed fusion additive manufacturing of a bimodal laminate heterostructure with Cu-base and Ni-base alloys\",\"authors\":\"Liming Yan ,&nbsp;Bo Li ,&nbsp;Jianrui Zhang ,&nbsp;Fuzhen Xuan\",\"doi\":\"10.1016/j.cirpj.2025.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A bimodal laminate heterostructure consisting of alternating copper-base (CuCrZr) and nickel-base (Hastelloy X) alloy layers was carefully fabricated via multi-material laser powder bed fusion (MM-LPBF) additive manufacturing approach, employing a custom-designed multi-powder delivery device system and proprietary process-control software. The heterostructure shows a hierarchical architecture with periodically alternating coarse-grained (predominantly Hastelloy X) and fine-grained (primarily CuCrZr) layers, interconnected by transition zones containing mixed grain morphologies. The heterostructural material demonstrates exceptional mechanical performance under building-direction loading, achieving a yield strength of 674.2 MPa, ultimate tensile strength of 756.4 MPa (∼92 % of monolithic LPBF-processed Hastelloy X), and elongation of 19.9 %. Crystal plasticity simulations elucidate deformation coordination and strength-ductility synergy mechanisms, while microstructural characterization confirms the bimodal grain structure originates from the LPBF-laser-induced melt pool dynamics and heterogeneous nucleation during the rapid solidification. This study establishes MM-LPBF as a viable approach for manufacturing high-performance, architecturally graded multi-material systems.</div></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":\"63 \",\"pages\":\"Pages 58-70\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581725001634\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581725001634","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

采用多材料激光粉末床熔合(MM-LPBF)增材制造方法,采用定制设计的多粉末输送装置系统和专有的过程控制软件,精心制备了由铜基(CuCrZr)和镍基(Hastelloy X)合金交替层组成的双峰层状异质结构。异质结构呈现出周期性交替的粗晶层(主要是哈氏合金X)和细晶层(主要是CuCrZr)的分层结构,由包含混合晶粒形态的过渡区相互连接。异质结构材料在建筑方向载荷下表现出优异的力学性能,屈服强度为674.2 MPa,极限抗拉强度为756.4 MPa(约为单片lpbf加工的哈氏合金X的92 %),伸长率为19.9 %。晶体塑性模拟阐明了变形协调和强度-延性协同机制,而显微组织表征证实了快速凝固过程中lpbf激光诱导熔池动力学和非均相形核导致的双峰型晶粒结构。本研究确立了MM-LPBF作为制造高性能、结构分级的多材料系统的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-material laser powder bed fusion additive manufacturing of a bimodal laminate heterostructure with Cu-base and Ni-base alloys
A bimodal laminate heterostructure consisting of alternating copper-base (CuCrZr) and nickel-base (Hastelloy X) alloy layers was carefully fabricated via multi-material laser powder bed fusion (MM-LPBF) additive manufacturing approach, employing a custom-designed multi-powder delivery device system and proprietary process-control software. The heterostructure shows a hierarchical architecture with periodically alternating coarse-grained (predominantly Hastelloy X) and fine-grained (primarily CuCrZr) layers, interconnected by transition zones containing mixed grain morphologies. The heterostructural material demonstrates exceptional mechanical performance under building-direction loading, achieving a yield strength of 674.2 MPa, ultimate tensile strength of 756.4 MPa (∼92 % of monolithic LPBF-processed Hastelloy X), and elongation of 19.9 %. Crystal plasticity simulations elucidate deformation coordination and strength-ductility synergy mechanisms, while microstructural characterization confirms the bimodal grain structure originates from the LPBF-laser-induced melt pool dynamics and heterogeneous nucleation during the rapid solidification. This study establishes MM-LPBF as a viable approach for manufacturing high-performance, architecturally graded multi-material systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CIRP Journal of Manufacturing Science and Technology
CIRP Journal of Manufacturing Science and Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
6.20%
发文量
166
审稿时长
63 days
期刊介绍: The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信