基于自适应矩的多模态随机参数不确定性分析方法

IF 3.5 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Boqun Xie , Xin Liu , Kai Liu , Shaowei Wu , Jiachang Tang
{"title":"基于自适应矩的多模态随机参数不确定性分析方法","authors":"Boqun Xie ,&nbsp;Xin Liu ,&nbsp;Kai Liu ,&nbsp;Shaowei Wu ,&nbsp;Jiachang Tang","doi":"10.1016/j.probengmech.2025.103841","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal random variables are widely encountered in practical engineering problems, such as the structural fatigue stress of a steel bridge accommodating both highway and railway traffic and the vibratory load experienced by a blade under stochastic dynamic excitations. Because of the error amplification effect caused by nonlinear response function in uncertainty propagation, traditional uncertainty analysis methods may yield large computational errors when multimodal distributions are involved. Herein, an uncertainty propagation method for multimodal distributions is proposed. First, the probability density function of multimodal random variables is modelled using a Gaussian mixture model. Second, the higher-order statistical moments of the response function are calculated through a bivariate dimension reduction method. Finally, the probability density function of the response function is computed using the maximum entropy method, and the desired statistical moment orders are means of an adaptive convergence framework. The effectiveness of the proposed method is demonstrated through two numerical examples and one engineering application.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"82 ","pages":"Article 103841"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive moment-based approach to uncertainty analysis considering multimodal random parameters\",\"authors\":\"Boqun Xie ,&nbsp;Xin Liu ,&nbsp;Kai Liu ,&nbsp;Shaowei Wu ,&nbsp;Jiachang Tang\",\"doi\":\"10.1016/j.probengmech.2025.103841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multimodal random variables are widely encountered in practical engineering problems, such as the structural fatigue stress of a steel bridge accommodating both highway and railway traffic and the vibratory load experienced by a blade under stochastic dynamic excitations. Because of the error amplification effect caused by nonlinear response function in uncertainty propagation, traditional uncertainty analysis methods may yield large computational errors when multimodal distributions are involved. Herein, an uncertainty propagation method for multimodal distributions is proposed. First, the probability density function of multimodal random variables is modelled using a Gaussian mixture model. Second, the higher-order statistical moments of the response function are calculated through a bivariate dimension reduction method. Finally, the probability density function of the response function is computed using the maximum entropy method, and the desired statistical moment orders are means of an adaptive convergence framework. The effectiveness of the proposed method is demonstrated through two numerical examples and one engineering application.</div></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"82 \",\"pages\":\"Article 103841\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892025001134\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892025001134","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

多模态随机变量在实际工程问题中经常遇到,如公路和铁路双轨钢桥的结构疲劳应力、叶片在随机动力激励下的振动载荷等。由于不确定性传播过程中非线性响应函数的误差放大效应,传统的不确定性分析方法在涉及多模态分布时可能产生较大的计算误差。本文提出了一种多模态分布的不确定性传播方法。首先,采用高斯混合模型对多模态随机变量的概率密度函数进行建模。其次,通过二元降维法计算响应函数的高阶统计矩。最后,采用最大熵法计算响应函数的概率密度函数,并采用自适应收敛框架计算所需的统计矩阶数。通过两个数值算例和一个工程应用验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive moment-based approach to uncertainty analysis considering multimodal random parameters
Multimodal random variables are widely encountered in practical engineering problems, such as the structural fatigue stress of a steel bridge accommodating both highway and railway traffic and the vibratory load experienced by a blade under stochastic dynamic excitations. Because of the error amplification effect caused by nonlinear response function in uncertainty propagation, traditional uncertainty analysis methods may yield large computational errors when multimodal distributions are involved. Herein, an uncertainty propagation method for multimodal distributions is proposed. First, the probability density function of multimodal random variables is modelled using a Gaussian mixture model. Second, the higher-order statistical moments of the response function are calculated through a bivariate dimension reduction method. Finally, the probability density function of the response function is computed using the maximum entropy method, and the desired statistical moment orders are means of an adaptive convergence framework. The effectiveness of the proposed method is demonstrated through two numerical examples and one engineering application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信