基于时域分解物理信息的神经网络的非线性Schrödinger方程的数据驱动SFB解决方案和参数发现

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jiaxin Chen , Biao Li , Manwai Yuen
{"title":"基于时域分解物理信息的神经网络的非线性Schrödinger方程的数据驱动SFB解决方案和参数发现","authors":"Jiaxin Chen ,&nbsp;Biao Li ,&nbsp;Manwai Yuen","doi":"10.1016/j.camwa.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we integrate domain decomposition techniques into the classical physics-informed neural networks (PINNs) by introducing interface training points, and propose a time domain decomposition PINNs (TDD-PINNs) framework. This model is applied to investigate the dynamic behaviour of solitons on finite background (SFB) solutions and parameter discovery in the nonlinear Schrödinger equation (NLSE). The TDD-PINNs is employed to study various SFB solutions, including the Akhmediev breather, Peregrine soliton, Kuznetsov-Ma soliton, as well as second- and third-order rogue waves. Experimental results demonstrate that, compared to classical PINNs, the proposed TDD-PINNs significantly reduce training time and improve prediction accuracy by one to two orders of magnitude. For inverse problems, the TDD-PINNs algorithm can accurately identify unknown parameters in the NLSE, both under noisy and noise-free conditions, addressing the complete failure of classical PINNs in parameter identification for NLSE and demonstrating strong robustness.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"199 ","pages":"Pages 45-63"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven SFB solutions and parameters discovery for nonlinear Schrödinger equation via time domain decomposition physics-informed neural networks\",\"authors\":\"Jiaxin Chen ,&nbsp;Biao Li ,&nbsp;Manwai Yuen\",\"doi\":\"10.1016/j.camwa.2025.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we integrate domain decomposition techniques into the classical physics-informed neural networks (PINNs) by introducing interface training points, and propose a time domain decomposition PINNs (TDD-PINNs) framework. This model is applied to investigate the dynamic behaviour of solitons on finite background (SFB) solutions and parameter discovery in the nonlinear Schrödinger equation (NLSE). The TDD-PINNs is employed to study various SFB solutions, including the Akhmediev breather, Peregrine soliton, Kuznetsov-Ma soliton, as well as second- and third-order rogue waves. Experimental results demonstrate that, compared to classical PINNs, the proposed TDD-PINNs significantly reduce training time and improve prediction accuracy by one to two orders of magnitude. For inverse problems, the TDD-PINNs algorithm can accurately identify unknown parameters in the NLSE, both under noisy and noise-free conditions, addressing the complete failure of classical PINNs in parameter identification for NLSE and demonstrating strong robustness.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"199 \",\"pages\":\"Pages 45-63\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003724\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003724","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文通过引入界面训练点,将域分解技术整合到经典物理信息神经网络(pinn)中,提出了时域分解pinn (tdd - pinn)框架。应用该模型研究了有限背景下孤子的动力学行为和非线性Schrödinger方程(NLSE)的参数发现。tdd - pin用于研究各种SFB解,包括Akhmediev呼吸波、Peregrine孤子、Kuznetsov-Ma孤子以及二阶和三阶异常波。实验结果表明,与经典PINNs相比,本文提出的TDD-PINNs显著减少了训练时间,预测精度提高了1 ~ 2个数量级。对于逆问题,TDD-PINNs算法在有噪声和无噪声条件下都能准确识别NLSE中的未知参数,解决了经典PINNs在NLSE参数识别中的完全失效问题,具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven SFB solutions and parameters discovery for nonlinear Schrödinger equation via time domain decomposition physics-informed neural networks
In this paper, we integrate domain decomposition techniques into the classical physics-informed neural networks (PINNs) by introducing interface training points, and propose a time domain decomposition PINNs (TDD-PINNs) framework. This model is applied to investigate the dynamic behaviour of solitons on finite background (SFB) solutions and parameter discovery in the nonlinear Schrödinger equation (NLSE). The TDD-PINNs is employed to study various SFB solutions, including the Akhmediev breather, Peregrine soliton, Kuznetsov-Ma soliton, as well as second- and third-order rogue waves. Experimental results demonstrate that, compared to classical PINNs, the proposed TDD-PINNs significantly reduce training time and improve prediction accuracy by one to two orders of magnitude. For inverse problems, the TDD-PINNs algorithm can accurately identify unknown parameters in the NLSE, both under noisy and noise-free conditions, addressing the complete failure of classical PINNs in parameter identification for NLSE and demonstrating strong robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信